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Abstract: Aiming at large-scale multiple-input multiple-output (MIMO) orthogonal frequency 

division multiple access (OFDMA) downlink mobile communication systems, a resource 

allocation algorithm based on the best energy efficiency is proposed. In the case of zero-forcing 

(ZF) precoding, the proposed algorithm is based on maximizing the lower bound of system 

energy efficiency, while considering the minimum rate requirements of each user, and optimizes 

by adjusting bandwidth allocation, power allocation and base station antenna number allocation 

Energy efficiency function. First, an iterative algorithm is proposed to determine the bandwidth 

allocation of each user according to the optimization conditions, and then the nature of the 

fractional planning is used and the convex optimization method is used to optimize the energy 

efficiency function by jointly adjusting the number of transmitting antennas at the base station 

and the transmitting power of the user. The simulation results show that the proposed algorithm 

can achieve better system energy efficiency performance and throughput performance while 

reducing the number of iterations. 

 

Keywords: OFDMA, Massive MIMO, Wireless Communication, Downlink, Resource 

Allocation, Energy Efficiency 

 

I. Introduction 

 

With the rapid increase in energy consumption of wireless communication equipment and the 

high degree of concern about global warming, green communication has gradually become a 

trend. Therefore, the research hotspot of resource allocation has gradually shifted from spectrum 

efficiency resource allocation [1~3] to energy efficiency resource allocation. [4~15]. Literature 

[5] studied the energy efficiency design of the multi-user OFDMA mobile communication 

downlink system, and proposed a user scheduling and rate allocation strategy under 

consideration of the QoS requirements of each user. Literature [6] studied the energy efficiency 

design of the downlink OFDMA mobile communication system, and given a sub-carrier 

allocation and power allocation algorithm taking into account the minimum data rate 

requirements. Literature [7] studied the energy efficiency resource allocation problem of the 
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downlink SISO-OFDM system. First, it proved that the OFDMA strategy can achieve the best 

energy efficiency, and then transformed the non-convex problem into a convex optimization 

problem to obtain an effective power allocation algorithm. 

Multiple input multiple output (MIMO) technology can transmit and receive through 

multiple antennas, making full use of space resources to improve channel capacity and system 

reliability. Therefore, it is recognized as one of the key technologies in the next generation of 

multi-user broadband wireless communication systems. Literature [12] studied the issue of 

energy-efficient resource allocation for uplink multi-user MIMO systems, and proposed an 

energy-efficient multi-user power allocation (EMMPA) algorithm based on water injection 

algorithm, but this algorithm has a relatively large amount of calculation. Literature [13] derives 

the lower bounds of the capacity when maximum ratio combining (MRC), zero forcing (ZF) and 

minimum mean square error (MMSE) are used in the uplink of a massive multiuser MIMO 

system, and studies energy efficiency and spectrum The relationship between efficiency, but the 

power consumption of the circuit is not considered in the power consumption of the system. 

Literature [14] studied the problem of energy efficiency resource allocation in massive MIMO 

downlink OFDMA system, and gave an iterative algorithm, but this algorithm only considers the 

system throughput requirements, and does not consider the minimum rate requirements of each 

user. 

Based on the above analysis, this paper studies the energy efficiency resource allocation 

of multi-user massive MIMO OFDMA downlink systems. First, assume that the transmitter fully 

knows the channel state information (CSI), and uses zero-forcing (ZF) precoding to obtain the 

lower bound expression of the system capacity, and then obtain the lower bound expression of 

energy efficiency. Under the minimum rate requirement of each user, pass appropriate the 

bandwidth allocation, power allocation and number of base station antennas are allocated to 

maximize the lower bound of the system's energy efficiency. Since the objective function is non-

convex and requires an exhaustive method to obtain the optimal solution, this paper proposes a 

low-complexity sub-optimal solution. First, the bandwidth allocation of each user is determined 

according to the user's minimum rate requirement and the objective function, and then Based on 

the user bandwidth allocation, the user transmit power and the number of base station antennas 

are jointly optimized. Finally, simulations verify the effectiveness and superiority of the 

proposed algorithm. 

 

II. System model and problem description 

 

This paper considers a typical single-cell downlink multi-user MIMO-OFDMA wireless 

communication system, in which the base station is equipped with 𝑀  transmit antennas to 

communicate with 𝐾 geographically dispersed single-antenna mobile users. Assuming that the 

channel is a block fading model, suppose that there are 𝑁 subcarriers in the system divided into 

𝑉 frequency blocks (including 
𝑁

𝑉
 subcarriers) as the basic unit of resource scheduling. According 

to the reciprocity of the channel, the uplink channel matrix 𝐺𝑣 = 𝐻𝑣𝐷
1/2(𝐻𝑣 represents the 𝑀 ×

𝐾  fast fading matrix from the user to the base station on the frequency block 𝑣 , 𝐷1/2 =

𝑑𝑖𝑎𝑔 {√𝛽
1
, … ,√𝛽

𝐾
} indicate 𝐾 × 𝐾 diagonal matrix, the diagonal element √𝛽

𝑘
 represents the 

slow fading coefficient from user 𝑘 to the base station), and the downlink channel matrix 𝐺𝑣
𝑇 =
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𝐷1/2𝐻𝑣
𝑇  is obtained. Therefore, the expression of the signal received by the 𝑘𝑡ℎ user on the 𝑣𝑡ℎ 

frequency block is 

𝑦𝑣,𝑘 = 𝑔𝑣,𝑘
𝑇 ∑ √𝑝𝑣,𝑘

𝐾

𝑘=1

𝑓𝑣,𝑘𝑥𝑣,𝑘 + 𝑧𝑣,𝑘 

                                                                      = 𝑔𝑣,𝑘
𝑇 √𝑝𝑣,𝑘𝑓𝑣,𝑘𝑥𝑣,𝑘 + 𝑔𝑣,𝑘

𝑇 ∑ √𝑝𝑣,𝑖𝑓𝑣,𝑖𝑥𝑣,𝑖 +𝐾
𝑖=1,𝑖≠𝑘

𝑧𝑣,𝑘               (1) 

where, 𝑔𝑣,𝑘  represents the k-th column of matrix 𝐺𝑣 , 𝑓𝑣,𝑘  represents the precoding matrix of user 

𝑘  on frequency block𝑣 , and 𝑥𝑣,𝑘  represents the transmission signal of user k on sub-carrier 

frequency block𝑣. Obviously, the first and second terms after the second equal sign in equation 

(1) respectively represent the desired signal of user 𝑘 and the interference from other users, and 

the last term is additive white Gaussian noise. 

In order to eliminate the mutual interference between different users, this paper uses zero-

forcing precoding. Let the precoding matrix 𝐹𝑦 = 𝐺𝑣
∗(𝐺𝑣

𝑇𝐺𝑣
∗)−1 , namely 𝐺𝑣

𝑇𝐹𝑣 = 𝐼𝑘 . Among 

them,𝐹𝑣 = [𝑓𝑣,1, … . , 𝑓𝑣,𝐾], therefore, 𝑔𝑣,𝑘
𝑇 𝑓𝑣,𝑖 = 𝛿𝑘𝑖 

𝛿𝑘𝑖 = {
1,      𝑘 = 𝑖
0,      𝑘 ≠ 𝑖

 

Therefore, the traversal achievable rate of user k on frequency block v is expressed as 

                                                                  𝑟𝑣,𝑘 = 𝐸 {𝑊𝑙𝑏 [1 +
𝑝𝑣,𝑘

𝑊𝑁0[(𝐺𝑣
𝑇𝐺𝑣

∗)
−1

]
𝑘𝑘

]}                                                   

(2) 

From Jensen's inequality, the lower bound of the rate of user 𝑘 on the frequency block 𝑣 is 

                                                          𝑟𝑣,𝑘 ≥ 𝑊𝑙𝑏 [1 +
𝑝𝑣,𝑘

𝑊𝑁0𝐸{[(𝐺𝑣
𝑇𝐺𝑣

∗)
−1

]
𝑘𝑘

}
]                                                             

(3) 

Where 

𝐸{[(𝐺𝑣
𝑇𝐺𝑣

∗)−1]𝑘𝑘} =
1

𝛽𝑘
𝐸{[(𝐻𝑣

𝑇𝐻𝑣
∗)−1]𝑘𝑘} 

                                                                                          =
1

𝐾𝛽𝑘
𝐸{𝑡𝑟[(𝐻𝑣

𝑇𝐻𝑣
∗)−1]}                                                  

(4) 

Since 𝐸{𝑡𝑟(𝑊−1)} =
𝑚

𝑡−𝑚
, where 𝑊~𝑊𝑚(𝑡, 𝐼𝑡)  is the central complex Wishart matrix with 

degrees of freedom𝑡(𝑡 > 𝑚), so 𝐸{𝑡𝑟[(𝐻𝑣
𝑇𝐻𝑣

∗)−1]} =
𝐾

𝑀−𝐾
. 

In summary, the lower bound of the rate of user k on frequency block v can be expressed as 

                                                                𝑟𝑣,𝑘 = 𝑊𝑙𝑏 [1 +
𝑝𝑣,𝑘(𝑀−𝐾)𝛽𝑘

𝑊𝑁0
]                                                                    

(5) 

Figure 1 shows the system throughput of equations (2) and (5) summing the number of users k 

and the number of frequency blocks v. Here, assuming the number of users K 12, the theoretical 

value is the sum of equation (2), the derived value is the sum of formula (5). It can be seen from 

the figure that the lower bound of the deduced rate expression is very close to the theoretical 

value, so this article uses this lower bound instead of the theoretical value. 
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It can be seen from equation (5) that the rate allocated by the user on each frequency block is 

only related to the large-scale fading of the user. Therefore, the rate allocated by user k can be 

expressed as 

                                                                 𝑟𝑘 = 𝑚𝑘𝑊𝑙𝑏 [1 +
𝑝𝑘(𝑀−𝐾)𝛽𝑘

𝑊𝑁0
]                                                                 

(6) 

where, 𝑚𝑘 represents the number of frequency blocks allocated to user 𝑘, and 𝑝𝑘  represents the 

transmit power of user 𝑘. Therefore, the lower bound of the system energy efficiency function 

can be expressed as 

                                                             𝑈 =
∑ 𝑟𝑘

𝐾
𝑘=1

∑ 𝑚𝑘𝑝𝑘+𝑀𝑝𝐶
𝐾
𝑘=1

=
∑ 𝑚𝑘𝑊𝑙𝑏𝐾

𝑘=1 [1+
𝑝𝑘(𝑀−𝐾)𝛽𝑘

𝑊𝑁0
]

∑ 𝑚𝑘𝑝𝑘+𝑀𝑝𝑐
𝐾
𝑘=1

                                         

(7) 

where, 𝑝𝑐  represents the circuit power consumption of each antenna. The circuit power 

consumption here includes the power consumption of all circuit modules on the signal 

transmission path, such as A/D conversion, D/A conversion, frequency synthesizer, mixer, power 

amplifier, etc. [16]. 

Based on the above analysis, the constraint maximization problem corresponding to the 

energy efficiency resource allocation in the downlink multi-user massive MIMO OFDMA 

system can be expressed as follows. 

Optimization: max
𝑃,𝑚,𝑀

𝑈(𝑃,𝑚,𝑀) 

Constraints: 

                                                            {
𝑟𝑘 ≥ 𝑅𝑚𝑖𝑛

∑ 𝑚𝑘 = 𝑉𝐾
𝑘=1

which{
𝑚𝑘𝑊𝑙𝑏 [1 +

𝑝𝑘(𝑀−𝐾)𝛽𝑘

𝑊𝑁0
] ≥ 𝑅𝑚𝑖𝑛

∑ 𝑚𝑘 = 𝑉𝐾
𝑘=1                                   

                         

(8) 

where, 𝑃 = [𝑝1, . . , 𝑝𝑘 , … , 𝑝𝑘]𝑇 represent the transmit power vector, 𝑚 =
[𝑚1, … , 𝑚𝑘, … ,𝑚𝑘]

𝑇represent the vector of the number of frequency blocks allocated by the user, 

and 𝑅𝑚𝑖𝑛 is the user’s lowest rate constraint. 

 

 

III. Massive MIMO OFDMA downlink system energy efficiency resource allocation 

 

The optimization problem described by equation (8) includes user frequency block number 

allocation, that is, bandwidth allocation, power allocation, and base station optimal antenna 

number allocation. The exhaustive method is very complicated to obtain the optimal solution, 

and it is usually difficult to achieve. . Therefore, this section adopts the sub-optimal resource 

allocation method. First, determine the bandwidth allocation for each user, and then allocate the 

power and the number of base station antennas for the users. 
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Fig 1. Throughput comparison 

 

3.1.Bandwidth allocation algorithm for maximizing energy efficiency based on 

minimum rate requirements (BAA) 

 

This paper proposes a bandwidth allocation algorithm (BAA) that maximizes energy efficiency 

based on the lowest rate requirement. From the optimization objective function, the objective 

function of bandwidth allocation can be expressed as 

                                                                       𝑚𝑘 = max
𝑚

∑ 𝑚𝑘𝑊𝑙𝑏𝐾
𝑘=1 [1+

𝑝𝑘(𝑀−𝐾)𝛽𝑘
𝑊𝑁0

]

∑ 𝑚𝑘𝑝𝑘+𝑀𝑝𝑐
𝐾
𝑘=1

                                                

(9) 

The BAA algorithm is described as follows.  

Initialize the user transmits power vector 𝑃0 and allocates 𝑅0 at the rate at which 𝑃0 is initialized 

𝑚𝑘 ← ⌈
𝑅𝑚𝑖𝑛

𝑅0(𝑘)
⌉  

𝑤ℎ𝑖𝑙𝑒   ∑ 𝑚𝑘 > 𝑉

𝐾

𝑘=1

 

𝑑𝑜       {𝑘∗ ← 𝑎𝑟𝑔 max
1≤𝑘≤𝐾

𝑚𝑘𝑚𝑘∗  ← 0} 

𝑒𝑛𝑑  𝑊ℎ𝑖𝑙𝑒 

𝑊ℎ𝑖𝑙𝑒  ∑ 𝑚𝑘

𝐾

𝑘=1

< 𝑉 
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𝑑𝑜        {𝑄𝑘 =
(𝑚𝑘 + 1)𝑊𝑙𝑏 [1 +

𝑝𝑘(𝑀−𝐾)𝛽𝑘

𝑊𝑁0
]

(𝑚𝑘 + 1)𝑝𝑘 + 𝑀𝑝𝐶
−

𝑚𝑘𝑊𝑙𝑏 [1 +
𝑝𝑘(𝑀−𝐾)𝛽𝑘

𝑊𝑁0
]

𝑚𝑘𝑝𝑘 + 𝑀𝑝𝐶
  𝑙 ← 𝑎𝑟𝑔 max

1≤𝑘≤𝐾
𝑄𝑘   𝑚𝑙

= 𝑚𝑙 + 1}     𝑒𝑛𝑑 𝑊ℎ𝑖𝑙𝑒 

3.2.Resource allocation algorithm for maximizing energy efficiency based on minimum 

rate requirements (RAA) 

 

Since the energy efficiency function is a fractional form and is non-convex, this paper considers 

using the nature of fractional planning to transform the fractional form into a subtractive form, 

and proves that the objective function of the subtractive form is jointly concave with respect to 

(P, M), and then transformed into the problem of convex optimization.  

According to the literature [17], according to the nature of fractional planning, the 

objective function (7) in fractional form can be converted into a subtractive form 

𝑅(𝑃,𝑀) − 𝑞∗[𝑃𝑇(𝑃) + 𝑃𝐶(𝑀)] 
Where 

𝑞∗ =
𝑅(𝑃∗, 𝑀∗)

𝑃𝑇(𝑃∗) + 𝑃𝐶(𝑀∗)
= max

𝑀,𝑃

𝑅(𝑃,𝑀)

𝑃𝑇(𝑃) + 𝑃𝐶(𝑀)
 

Therefore, the objective function formula can be transformed into an optimization problem: 

𝐹(𝑞) = max
M,P

𝑅(𝑃, 𝑀) − 𝑞[𝑃𝑇(𝑃) + 𝑃𝐶(𝑀)] 

 

= max
M,P

∑ 𝑚𝑘𝑊𝑙𝑏

𝐾

𝑘=1

[1 +
𝑝𝑘(𝑀 − 𝐾)𝛽𝑘

𝑊𝑁0

] − 𝑞 (∑ 𝑚𝑘𝑝𝑘 + 𝑀𝑝𝐶

𝐾

𝑘=1

) 

                                        ≈ max
M,P

∑ 𝑚𝑘𝑊𝑙𝑏𝐾
𝑘=1 [

𝑝𝑘(𝑀−𝐾)𝛽𝑘

𝑊𝑁0
] − 𝑞(∑ 𝑚𝑘𝑝𝑘 + 𝑀𝑝𝐶

𝐾
𝑘=1 )                          

(10) 

Constraints: 

𝑚𝑘𝑊𝑙𝑏 [
𝑝𝑘(𝑀 − 𝐾)𝛽𝑘

𝑊𝑁0

] ≥ 𝑅𝑚𝑖𝑛 

Hypothesis 

𝑓 = 𝑅(𝑃,𝑀) − 𝑞[𝑃𝑇(𝑃) + 𝑃𝐶(𝑀)] 

= ∑ 𝑚𝑘𝑊𝑙𝑏 [
𝑝𝑘(𝑀 − 𝐾)𝛽𝑘

𝑊𝑁0

] − 𝑞 (∑ 𝑚𝑘𝑝𝑘 + 𝑀𝑝𝐶

𝐾

𝑘=1

)

𝐾

𝑘=1

 

The Hessian matrix of function f is 

𝐻(𝑓) =

[
 
 
 
 −

𝑚𝑘𝑊

𝑝𝑘
2𝑙𝑛2

0

0 − ∑
𝑚𝑘𝑊

(𝑀 − 𝐾)2 ln 2

𝐾

𝑘=1 ]
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Obviously, 𝐻(𝑓) is a negative definite matrix. At this time, the function f is jointly concave with 

respect to (𝑃,𝑀) , which can be solved by convex optimization. Therefore, the Lagrangian 

function of the objective function can be expressed as  

𝐿(𝜆, 𝑃,𝑀) = ∑ 𝑚𝑘𝑊𝑙𝑏𝐾
𝑘=1 [

𝑝𝑘(𝑀−𝐾)𝛽𝑘

𝑊𝑁0
] − 𝑞[∑ 𝑚𝑘𝑝𝑘 + 𝑀𝑝𝑐

𝐾
𝑘=1 ] +

∑ 𝜆𝑘 {𝑚𝑘𝑊𝑙𝑏 [
𝑝𝑘(𝑀−𝐾)𝛽𝑘

𝑊𝑁0
] − 𝑅𝑚𝑖𝑛}𝐾

𝑘=1                                                                                                                                                                            

(11) 

where, 𝜆𝑘 ≥ 0  is the Lagrangian multiplier corresponding to the constraint formula (10b). 

Therefore, the dual problem of equation (10) can be expressed as 

                                                                          𝑚𝑖𝑛
𝜆≥0

𝑚𝑎𝑥
𝑃,𝑀

𝐿(𝜆, 𝑃,𝑀)                                                            

(12) 

Given 𝜆, using KKT conditions, the optimal transmit power 𝑃⋆ and the number of base station 

antennas 𝑀⋆ can be expressed as 

                                                        
𝜕𝐿

𝜕𝑝𝑘
=

𝑚𝑘𝑊

𝑙𝑛2.𝑝𝑘
− 𝑞𝑚𝑘 +

𝜆𝑘𝑚𝑘𝑊

𝑙𝑛2.𝑝𝑘
= 0 ⇒ 𝑝𝑘

⋆ =
(1+𝜆𝑘)𝑊

𝑙𝑛2.𝑞
                                   

(13) 

𝜕𝐿

𝜕𝑀
=

𝑊 ∑ 𝑚𝑘
𝐾
𝑘=1

𝑙𝑛2(𝑀 − 𝐾)
− 𝑞𝑝𝑐 +

𝑊 ∑ 𝜆𝑘𝑚𝑘
𝐾
𝑘=1

𝑙𝑛2(𝑀 − 𝐾)
 

                                                               = 0 ⇒ 𝑀⋆ = ⌈
(𝑉+∑ 𝑚𝑘𝜆𝑘

𝐾
𝑘=1 )𝑊

𝑙𝑛2.𝑞𝑝𝑐
+ 𝐾⌉                                                       

(14) 

where, ⌈•⌉ Means rounding up. 

The Lagrange multiplier 𝜆 is obtained by recursive method 

                               𝜆𝑘(𝑗 + 1) = [𝜆𝑘(𝑗) − 𝛿 [𝑚𝑘𝑊𝑙𝑏 (
𝑝𝑘(𝑀−𝐾)𝛽𝑘

𝑊𝑁0
) − 𝑅𝑚𝑖𝑛]]

+

                                 

(15) 

where, 𝑗 represents the number of iterations, and 𝛿 represents the iteration step length. Using the 

Dinkelbach method in the literature [17], an iterative method is proposed. The specific algorithm 

is described as follows. 

1) Initialization 𝑃⋆ = 𝑃0, 𝑀
⋆ = 𝑀0, 𝑞⋆ = 0, 𝜆 = 0, 𝛿 = 𝛿0, 𝜀 = 0.01 

2) While 𝑅(𝑃⋆, 𝑀⋆) − 𝑞⋆[𝑃𝑇(𝑃⋆) + 𝑃𝐶(𝑀⋆)] > 𝜀 

3) do 𝑞⋆ ←
𝑅(𝑃⋆,𝑀)

[𝑃𝑇(𝑃⋆)+𝑃𝐶(𝑀⋆)]
 

4) Use equation (15) to update the Lagrangian multiplier 

5) Use equation (13) to get the power distribution 

6) Use equation (14) to get the number of base station antennas 

𝑅𝑒𝑡𝑢𝑟𝑛  𝑞⋆, 𝑃⋆, 𝑀⋆  
        The proof of the convergence of the algorithm can be found in literature [11]. 

 

IV. Simulation results and algorithm complexity analysis 

 

4.1.Simulation results and analysis 
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In the simulation, a hexagon with a cell radius of 1000 m is set, and users are randomly assigned 

to a range 100 m away from the base station. The large-scale fading from the k-th user to the 

base station is 𝛽𝑘 =
𝑧𝑘

(
𝑟𝑘
𝑟ℎ

)
𝑢, where 𝑧𝑘 is the standard deviation The log-normal random variable of 

𝜎𝑠ℎ𝑎𝑑𝑜𝑤   is the distance from the user to the base station, and u is the path loss index. The 

specific system parameters are shown in Table 1. 

 

Parameters  

 

Values 

Total Bandwidth 2.56MHz 

Number of Frequency Blocks 128 

Noise Density 𝑁0 -131 dBW/MHz 

𝜎𝑠ℎ𝑎𝑑𝑜𝑤  8dB 

𝑢  3.8 

Circuit power consumption of each antenna at 

the base station𝑃𝐶  

100mW 

User initialized transmit power 𝑃0 [0.1,… ,0.1]𝑇𝑚𝑊  

Initial value of the number of base station 

antennas 𝑀0 

𝐾 + 1 (K Represents number of users) 

Step size 𝛿 10−4   
Rate requirements for each user 𝑅𝑚𝑖𝑛 3.0×107

𝑘
bits/s (K Represents number of users) 

 

 
Fig 2. Performance Comparison of Energy efficiency over variable user number 

 

In order to better compare the performance of the algorithm, the bandwidth allocation in the 

BABS algorithm uses the signal-to-noise ratio-based bandwidth allocation algorithm (BABS) 

proposed in the literature [18], and the power allocation and the number of base station antenna 
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allocations use the RAA algorithm proposed in this paper; EMMPA The bandwidth allocation in 

the algorithm first adopts the method of equal allocation. The remaining frequency blocks are 

allocated to users with better channel conditions, that is, users with the largest large-scale fading 

factor. Power allocation and base station antenna number allocation use the EMMPA algorithm 

proposed in [12]. This algorithm maximizes the energy efficiency of the system by adjusting the 

user transmit power without any constraints. In the simulation, it is assumed that the number of 

base station antennas of the algorithm is (𝐾 + 1) , and the power allocation is 𝑝𝑘 = [𝜇 −

𝑊𝑁0

(𝑀−𝐾)𝛽𝑘
]
+

. 

 
Fig 3. Performance comparison of proposed algorithm with literature with variable user 

numbers 

 

Figure 2 shows the energy efficiency performance of each algorithm under different 

number of users. It can be seen from the figure that the performance of the algorithm in this 

paper is between the EMMPA algorithm and the BABS algorithm. This is because the EMMPA 

algorithm maximizes the energy efficiency of the system without any constraints, so the 

algorithm has the best energy efficiency performance, while the BABS algorithm is Bandwidth 

allocation algorithm based on signal-to-noise ratio, so the energy efficiency performance of this 

algorithm is worse than that of the algorithm in this paper. It can also be seen from the figure that 

as the number of users increases, the energy efficiency performance of the system gradually 

decreases. This is because as the number of users increases, the bandwidth that each user can 

allocate gradually decreases and the transmission power needs to be increased to meet the 

requirements. The user's minimum rate requirement for the EMMPA algorithm, although there is 

no rate requirement, the average bandwidth allocation will cause the bandwidth allocated to users 

with better channel conditions to gradually decrease, thereby reducing system energy efficiency. 

At the same time, as the number of user’s increases, the bandwidth allocated by the minimum 

user rate requirement 𝑚𝑘 ← ⌈
𝑅𝑚𝑖𝑛

𝑅0(𝑘)
⌉ will occupy the dominant position of the two bandwidth 
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allocation algorithms of this paper and the BABS algorithm. , Leading to their energy efficiency 

performance gap is getting smaller and smaller. 

Figure 3 shows the throughput performance of each algorithm under different number of 

users. It can be seen from the figure that the throughput performance of the algorithm in this 

paper is better. This is because the EMMPA algorithm has no rate requirements for users, but 

only maximizes the energy efficiency of the system, so the throughput of the system is low; 

while the broadband allocation method used by the BABS algorithm is Minimize the 

transmission power, so the throughput performance of the system is lower than the algorithm in 

this paper. It can also be seen from the figure that as the number of users increases, the system 

throughput performance gradually increases. This is because as the number of users increases, 

the system's multi-user diversity characteristics become more obvious. Therefore, the algorithm 

in this paper has both better system energy efficiency performance and better system throughput 

performance. 

 
Fig 4. Performance comparison of optimal base station antenna with variable user 

numbers 

 

Figure 4 shows the optimal base station antenna number performance of each algorithm 

under different user numbers. It can be seen from the figure that as the number of users increases, 

the number of optimal base station antennas required by the system gradually increases. The 

EMMPA algorithm does not optimize the number of antennas. It only optimizes energy 

efficiency by changing the transmit power. Therefore, the number of base station antennas is 

always equal to 𝐾 + 1, and the BABS algorithm is very close to the optimal number of base 

station antennas in this algorithm. 

Figure 5 shows the transmit power performance of each algorithm under different number 

of users. It can be seen from the figure that as the number of users increases, the transmission 

power required by the BABS algorithm and the algorithm in this paper increases rapidly with the 

number of users. This is because the BABS algorithm and the algorithm in this paper consider 



e-ISSN 2320 –7876 www.ijfans.org  

Vol.11, Iss.7, 2022 
Research Paper                              © 2012 IJFANS. All Rights Reserved UGC CARE Listed (Group -I) Journal 
 

65 
 

the user's minimum rate requirements, while the EMMPA algorithm does not have any 

constraints. 

Figure 6 shows the energy efficiency performance of each algorithm under different 

number of frequency blocks. It can be seen from the figure that the energy efficiency 

performance of the algorithm in this paper increases rapidly with the increase of the number of 

frequency blocks, while the energy efficiency performance of the BABS algorithm and the 

EMMPA algorithm increases slowly with the increase of the number of frequency blocks. This is 

because the BAA bandwidth allocation algorithm is used in the algorithm in this paper. This 

algorithm enables the energy efficiency performance to increase greatly with the increase of the 

number of frequency blocks, while the performance of the bandwidth allocation algorithm in the 

BABS algorithm and the EMMPA algorithm does not change significantly with the increase of 

the number of frequency blocks. It can also be seen from the figure that as the number of 

frequency blocks increases, the performance of the algorithm in this paper is closer to that of the 

EMMPA algorithm. This is because the BAA bandwidth allocation algorithm used in the 

algorithm in this paper can better realize the multi-user diversity gain of the system. 

 
Fig 5. Performance comparison of Transmit power under variable User Number 
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Fig 6. Performance comparison of Energy efficiency performance under variable number 

of frequency blocks 

 

 

 

4.2.Complexity Analysis 

 

The BABS algorithm is a bandwidth allocation algorithm based on the signal-to-noise ratio. 

During bandwidth allocation, K users iterate V times, so the bandwidth allocation calculation 

complexity is 𝑂(𝐾𝑉). The calculation complexity of bandwidth allocation in the algorithm in 

this paper is 𝑂 (1 + 𝐾 (𝑉 − ∑ ⌈
𝑅𝑚𝑖𝑛

𝑅0(𝑘)
⌉𝐾

𝑘=1 )), the computational complexity of the number of base 

station antennas and power allocation is 𝑂(𝐼𝜆), so the complexity of the RAA algorithm is 

𝑂(𝐾𝐼𝐴𝑃𝐼𝜆). The computational complexity of bandwidth allocation in the EMMPA algorithm is 

𝑂 (1 + 𝐾 (𝑚𝑜𝑑 (
𝑉

𝐾
))), where the factor is divided by the power factor 𝛼, and the remainder is 

the power distribution formula. To get the global optimal 𝜇⋆, at least ⌈𝑙𝑏 (
(𝛼−1)𝜇⋆

𝜀
− 1)⌉ iterations, 

where |𝜇 − 𝜇⋆| < 𝜀 , the computational complexity of this power allocation is 

𝑂 (𝐾 ⌈𝑙𝑏 (
(𝛼−1)𝜇⋆

𝜀
− 1)⌉). In summary, the computational complexity of the BABS algorithm is 

𝑂(𝐾𝑉 + 𝐾𝐼𝐴𝑃𝐼𝜆), and the computational complexity of the algorithm in this paper is 𝑂 (1 +

𝐾 (𝑉 − ∑ ⌈
𝑅𝑚𝑖𝑛

𝑅0(𝑘)
⌉𝐾

𝑘=1 ) + 𝐾𝐼𝐴𝑃𝐼𝜆) , the computational complexity of the EMMPA algorithm is 

𝑂 (1 + 𝐾(𝑚𝑜𝑑(𝑉/𝐾)) + 𝐾 ⌈𝑙𝑏 (
(𝛼−1)𝜇⋆

𝜀
− 1)⌉). 
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V. Conclusion 

 

In this paper the energy efficiency resource allocation problem in the multi-user massive MIMO 

OFDMA downlink system is studied. In meeting the minimum rate requirement of each user, a 

corresponding optimization mathematical model was established with the goal of maximizing the 

lower bound of system energy efficiency. Since the global optimal solution needs to be obtained 

through exhaustive exhaustion and the complexity is high, the whole optimization process is 

divided into 2 steps to complete. First, determine the bandwidth allocation of each user according 

to the minimum rate requirement of each user and the objective function of maximizing system 

energy efficiency, and then jointly optimize the user's transmit power and the number of base 

station antennas based on the user's bandwidth allocation. The proposed algorithm achieves 

better energy efficiency performance and throughput performance on the premise of meeting 

user QoS requirements. 
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