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Abstract 

Present and future supercomputers offer many opportunities and ad vantages to attack 

complex and demanding industrial and applied mathematical problems, but provide also new 

challenges. In the Peta Flops regime, these concern both, the way to exploit the increasingly 

available power and the need of designing algorithms which are scal able and fault-tolerant at the 

same time. An example of a probabilistic domain decomposition method, which is indeed 

scalable and naturally fault-tolerant, is presented. Grid computing should also be mentioned as 

an increasingly popular way to perform massively distributed com puting: it represents a way to 

exploit computing power, aside the ex isting supercomputers. Beyond classical supercomputers 

there is the prospective quantum computer, in view of which it is advisable to start now a search 

for suitable algorithms for entire classes of problems. Due to the ever more challenging problems 

put forth by the needs of scientific computing, computing power increases continuously, making 
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it possible to cope with more complex applications. These problems include both, purely 

scientific advances and very practical industrial needs.  

Hybrid Comparison Sorting  

Sorting is a problem of fundamental importance in Computer Science with a rich history 

of algo rithm design, analysis, and engineering. Several parallel algorithms and their 

corresponding efficient implementations targeted at modern architectures including the Cell BE 

,GPU based works including , the Intel MIC, are being studied. However, all of the above works 

utilize only a homogeneous device.  

Given the importance and relevance of hybrid computing, in this work we propose a 

hybrid algorithm for sorting on a CPU+ GPU platform. We specifically consider comparison 

based sorting algorithms for reasons of wide applicability to settings such as variable length 

keys, and database records. We extend the algorithm presented in , which is a natural extension 

of the standard quick sort , to operate in a heterogeneous setting. The basic idea of sample sort  is 

to choose k − 1 pivots, or splitters, from the input list. The input list is then split into k disjoint 

lists each containing roughly n/k elements. Each of the sub-lists can be sorted independently. 

Typically, a recursive approach is taken to reduce the size of the sublists further.  

Motivation  

We observe that in most GPGPU based computing, the CPU is practically idle in the 

computation process. This leads to inefficient resource usage, more so as the computational 

power of present gen eration multicore CPUs is on the rise. Hence, to improve performance, we 

use such a hybrid CPU and GPU system and target full resource utilization. We call this as 

hybrid multicore computing, or hybrid computing in short. Hybrid computing is gaining 

tremendous research attention of late given that issues such as power and performance dominate 

parallel computing.  

Further, in a recent influential work , the authors argue and provide evidence for showing 

that on a diverse collection of 14 workloads, GPUs can offer only modest performance 
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advantage compared to multicore CPUs. Sorting is one of the workloads considered in  where it 

is shown that the GPU is on an average only 1.5 times faster than the CPU. We interpret the 

message of  as not to compare one device against the other, but to study the benefits of using 

both the devices simultaneously. We call this as hybrid computing.  

Related Work  

Radix sort algorithms are some of the most efficient algorithms that have been 

implemented on GPUs and other multicore architectures. Radix sort is one of the easiest 

algorithms to be implemented in parallel machines because of its reducibility to a popular 

primitive which is the scan or parallel prefix operation. In works such as , the authors have 

shown the use of the scan and split operation for efficiently implementing the radix sort routine. 

A popular randomized parallel algorithm for radix sorting was proposed by Helman et al. in. The 

most popular recent implementation of radix sort was proposed by Merrill and Grimshaw . 

However, radix sort algorithms suffer from a basic bottleneck, where the sorting process 

becomes computationally more expensive with the increase in the size of the keys.  

Merge sort is another popular sorting algorithm which recursively merges multiple sorted 

sub sequences into a single sorted sequence. The first parallel merge sorting algorithm was 

proposed by Richard Cole . In the earliest works on merge sorting on the GPU, the work of 

Purcell et al., is of high importance. The current best result in comparison sort on GPUs is by 

Davidson et al. The work also provides several insights into efficient implementation on GPUs 

by reducing memory access latencies, improving register utilization and reducing segmentation.  

In the following, we now describe the changes required for executing the algorithm in a 

hybrid manner. One important factor that our algorithm design addresses is to aim for load 

balance between the CPU and the GPU and also within the GPU. In all our algorithms, we have 

used labels such as CPU, GPU and CPU→ GPU. The label CPU refers to computations that take 

place in the CPU, and GPU refers to those on the GPU. The label CPU→ GPU refers to the data 

transfers that is happening between the CPU and the GPU.  
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Figure 3.1 Different phases in hybrid sorting. The different colors represent the different 

bin labels which are brought together by scattering.  

 

 

http://www.ijfans.org/


e-ISSN 2320 –7876 www.ijfans.org 
Vol.11, Iss.9, Dec 2022 

© 2012 IJFANS. All Rights Reserved Research Paper 

 

 

 
 
 
 
 

826 
 

Figure 3.2 An example run of our algorithm on a sample input of 9 elements. In this, we 

show the first pass of the algorithm on our input list, that creates the first set of bins.  

 

Phase I  

Phase I involves selecting splitters as a uniform sample of the input list and then 

identifying the bin into which each element can be assigned to based on the splitters. we build a 

binary search tree of the splitters. The bin to which an element belongs to can then be efficiently 

identified by searching in the binary search tree. Having such a binary search tree is efficient 

since it reduces thread divergence of a block of threads in a GPU. Such techniques have been 

found to be useful in also multicore CPUs . As we see in Algorithm 2, we now partition the list 

of labels into two parts each of which can be handled by the CPU and the GPU respectively. Let 

us call these lists as Lc and Lg respectively. As of now we employ the static partitioning strategy.  

The static scheme of distribution of work have often been used in several popular 

benchmarks such as ScaLAPACK. The static strategy has been found to be good because of its 

optimal communication costs, lesser synchronization overheads and scalable load balancing 

properties. we show how the threshold of separation of the work between the two devices have a 

bearing on the final result. Also, this parameter helps in another way by enabling us to auto tune 

the entire application.  

After the separation of the data between the two devices, each of them now completes the 

binning process by using the binary tree formed using the splitters. To facilitate a hybrid 

execution of the other phases, we now associate each element with its bin number. We call these 
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bin numbers as labels. This allows us to treat some of the following phases on inputs in the range 

[1, k] thereby simplifying the later phases.  

 

Phase II  

 

At the end of Phase I, elements that have a common label are scattered across the input. 

In Phase II, described in Algorithm 3 for each label, we count the number of elements that have 

this label. This is done by computing the histogram of the list Lc on the CPU and the histogram of 

the list Lg on the GPU. In our application we use histograms in the second phase for getting the 

frequency of each bin label that is present on each block.  
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Phase I  

The computation in this phase involves finding the bin number to which each input 

element belongs to. The bin number of an element is the number of splitters that are smaller than 

the element. On the GPU, if all the elements are stored in contiguous locations, then one can 

benefit from a large number of coalesced accesses in this computation. A further optimization 

described in  builds a height balanced binary search tree out of the splitters. At this point, finding 

the bin number of an element translates to a search in the binary search tree of splitters. One can 

also reduce thread divergence using this technique .  

For the above reasons, we notice that indeed this phase can be executed entirely on the 

GPU. In fact, the time taken when this phase is executed on the GPU entirely is less than 2% of 

the overall time even for large inputs. However, we choose to perform this step also on the CPU 

and the GPU. This is justified by the fact that the input array is available only at the CPU at the 

beginning. For the GPU to start executing, the input array has to be made available at the GPU. 

In addition, since the other phases run simultaneously on both the CPU and the GPU, the output 

of this phase has to be sent to the CPU.  

This involves an unnecessary data transfer step, which can be avoided if the bin numbers 

of a portion of the input is computed on the CPU.  

We therefore choose a certain threshold and split the input array I into two parts, Ic  and 

Ig. We choose splitters in I, and also find the bin numbers of elements in Ic on the CPU. The array  

Ig  and the splitters are simultaneously transferred to the GPU. The GPU then computes the bin 

numbers of elements in Ig. At the end of the Phase 1 we have a list of bin labels that correspond 

to each of the input elements and is now called Lg and Lc for the GPU and the CPU parts 

respectively.  

Phase II  

Phase II computes the histogram of the bin labels. Computing histograms on the GPU is a 

well researched problem. Briefly, the entire computation is split into computing local histograms 
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at each of the SMs and then combining these histograms to arrive at a global histogram. One of 

the factors that affect the GPU performance is the number of threads that should be launched on 

the GPU so as to use to entire bandwidth on the GPU. Within each SM, to compute a local 

histogram, threads use shared memory to improve memory coalescing. A fundamental bottleneck 

in the histogram computation on GPUs is that GPUs offer very low throughput when using 

atomic operations.  

This however, helps the hybrid computing model, since as described in Algorithm 3, the 

CPU also computes the histogram on an independent input, Lc. This computation is data is 

simply added using atomic primitives supported by OpenMP . As we are having a constant block 

size, it is com paratively simpler to parallelize across all the available cores of the CPU. A 

manual unrolling of the histogram serves this purpose and uses all the six cores that are available 

on the CPU and also gives us a significant performance benefit. In addition to this, we ensure to 

carefully optimize the histogram computation of the histogram on the CPU. We read in a certain 

tile of data into the L2 cache of the CPU. This tile size is based on the size of the L2 cache on the 

Westmere CPU. We iterate in steps of this tilesize so that the entire data on the L2 cache is used 

and does not require to be used afterwards. Inside each of the unrolled loops, we now use a 

second tile size that reads data from the L2 cache into the local cache of each of the cores. These 

cores now maintain a histogram store on the shared local cache and performs the atomic 

increments. Each of the instructions issued for increments are vectorized so as to ensure proper 

SIMD execution. We ultimately get a bandwidth bound performance from the CPU which is 

marginally better than the GPU. At the optimal threshold, the GPU stays idle for only 2% of the 

entire Phase II time.  

At the end of this histogram computation, we synchronize the two devices using the 

CUDA event synchronization functions. This is required since Phase III can start only after the 

histogram computation is completed on both the devices.  

• Staggered: In this the input of n numbers is arranged in p buckets. In the buckets 

numbered 1 to p/2 (both inclusive), all the numbers are chosen uniformly at random from [(2i − 
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1) · 231/p,(2i)·231/(p−1)], where i is the bucket number. For buckets numbered p/2+1 to p, all the 

elements are chosen uniformly at random from [(2i−p−2)·231,(2i−p−1)·231/(p−1)].  

• Bucket Sorted: In this an input of  n numbers is organized into p buckets as follows. The 

first n/p2 elements in each bucket are chosen uniformly at random from [0, 231/p − 1], the second 

n/p2 elements in each bucket are chosen uniformly at random from [231/p, 232/(p− 1)], and so on.  

2. Variable length keys: For sorting strings we mainly use two different data sets. First 

we exper iment with a Protein Sequence Database which is 650 MB in size and has many protein 

sequences that are represented using the popular “FASTA”. In this format, each of the sequences 

are up to 120 characters long. Apart from this, we also experiment with a data set of 500 MB size 

that is containing a set of random strings and are up to 500 characters in length.  

 

Figure 3.5 Percentage improvement over sample sort [81] at various phases.  

Profiling, Resource Utilization, and Idle Times  

One aspect of our hybrid implementation is that each phase of our hybrid algorithm runs 

faster than the corresponding phase in the pure GPU version from [81]. This is shown in Figure 

3.5. In Figure 3.5, the times for Phase II and Phase III are only over the first iteration. This is 

justified since the overall time taken by Phase IV, which includes recursive calls to Phases I-III, 
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is a very small portion of the entire runtime of the implementation. Also, this recursive calls 

happens over data that is present in each of the bins that has been created in the first iteration. 

Hence, the overall impact of the hybridization is felt mostly in the first iteration of the 

application. In Figure 3.5, we show the percentage improvement of our hybrid implementation 

over the pure GPU sample sort implementation. We now analyze the results of Figure 3.5.  

In Phases II and III, we notice that there is a significant improvement that is achieved 

over the corresponding pure GPU phases. In both of these phases, we notice that there is a 

benefit of around 25%. Further, the improvement of Phase II increases as the size of the input 

increases. This is because of two reasons. Firstly, as the input size increases, the distribution of 

the numbers happen over a larger number of bins. Hence, the conflicts arising during the atomic 

computations are reduced. Also, the larger number of bins are now also divided among the CPU 

and GPU which leads to a higher degree of work distribution. This leads to a better works 

sharing and consequent increase in the gain of Phase II.  

Notice from Figure 3.5 that performance gain of our hybrid implementation in Phase I 

and Phase IV is not very significant. This can be explained as follows. Phase I is not highly 

compute intensive. Indeed in our experimentation, we notice that Phase I if run entirely on the 

GPU takes only less than 1% of the total time. However, even this phase is done in a hybrid 

manner as that reduces the data communication  
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Figure 3.6 Performance on uniformly random keys sorting in high-end platform.  

. Doing so has the other benefit that the CPU utilization improves, and hence the idle time 

reduces. This can be noticed also from Figure 4.4 where the phase-wise timings are shown for an 

input of size 4 M. We define idle time of a device as the total time for which the device is idle. 

The idle time of an implementation is then the maximum idle time experienced by any of the 

devices. In our algorithm, the GPU is idle for at most 5% of the total runtime, and the CPU is 

idle for at most 12% of the total runtime. So, the idle time of our implementation is 12%.  

Results of Sorting  

Results on Fixed Length Keys  

In this section, we show the results of our implementation on various experimental 

datasets of fixed length keys. Since most of the GPU sorting algorithms are designed on 32 bit 

numbers, we have exper imented using the 32 bit integers as well. Results on 64 bit integers are 

shown later.  
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The input is generated as a uniformly random dataset described earlier. In Figure 4.6, we 

report the performance of the 32 bit key only sorting. In this case, we see that we achieve almost 

a 23% improvement on an average over the closest best known result .  

We now look at the sorting results for key-value pairs in Figure 3.7. As can be noticed 

from Figure 3.7, our hybrid implementation is on average 40% faster than the result of , and on 

average 20% faster than the result . This improvement can be attributed to the fact that the 

majority of the computation involves operations such as histogram and scattering which are very 

amenable to a hybrid execution environment.  

 

Figure 3.7 Performance on key-value             Figure 3.8 Performance on 32 bit pairs in 

high-end platform.                            Gaussian in put.  

We report the behavior of our algorithm on the inputs such as Gaussian distributed, 

Deterministic Duplicates, Staggered, and Bucket sorted in the following. In Figure 3.8, we see 

the performance of our algorithm on the Gaussian distributed input. We achieve an improvement 

of 10% on an average on the Gaussian input because of the added overhead in the scattering 

phase. As the number of bins created in this case is higher than the other inputs, the scattering in 

the first phase of the algorithm consumes more time. In both Figure 3.7 and Figure 3.8, we notice 

a significant performance improvement only when the input size cross the threshold of 218 
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elements. This can be attributed to the fact that on inputs greater than 218 elements, the number of 

sublists that are created before the threshold of sorting is reached enables the GPU to achieve 

bandwidth saturation. Hence, the number of threads employed towards the whole GPU scattering 

process are higher which helps get higher gains.  

Results on Other Platforms We also experimented on the Hybrid-Low platform 

described. We see the result of the sorting in Figure 3.15. We experiment using 64 bit key-value 

pairs on this platform and achieve a benefit of 18% on an average over the best known merge-

sort implementation.  

In the Figures 3.16, 3.17, we see the performance of our key only and key-value sorting 

across three different platforms that we have already explained. The sorting method performs the 

best with the K20c GPU as the GPU has a bigger sized L2 cache and offers a much higher 

degree of  

 

Figure 3.15 Performance on key value pairs on low-end platform.  

parallelism. So, due to the L2 caching of the data, the overhead suffered during Phase III is 

significantly offset.  
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Figure 3.16 Performance of 32 bit sorting Figure 3.17 Performance of key value across 

different platforms at input of 221  sorting across different platforms at  

uni formly random elements.    input of 221 ele ments.  

 

Conclusion  

As is mentioned in several earlier works, the performance of the histogram on the GPU 

depends heavily on the utilization of the shared cache of the GPU and the minimization of 

atomic conflicts. Further, the GPU is not very amenable to such atomic operations. Hence, this 

computation has the potential to benefit from a hybrid computing model. This is verified in 

Figure 4.22, where we see that there is a gain of nearly 25% on an average over the pure GPU 

implementation. Such a gain is remarkable given that the peak FLOP rating of the CPU in our 

experimental platform is only a tenth of that of the GPU.  

Our hybrid sorting clearly demonstrates the benefits that can be gained out of the use of 

heteroge neous processors that are most commonly available in today’s commodity desktops and 

laptops. In this work we have implemented and verified our algorithm agains a wide array of 

inputs of fixed length as well as variable length keys. All the results definitively show the 

adavantage of heterogeneous imple mentations. In the near future we will be having completely 

heterogeneous processors such as the ones of AMD APUs and Intel Ivybridge. Hence, in hybrid 

programming and research in this area holds a lot of promise.  
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In the near future we want to work on greater heterogeneous platforms such as the ones 

involving multiple GPUs and other multicore processors such as the Intel MIC. It will be 

interesting to see the performance of our sorting mechanism on such kind of platforms where 

there will be both tightly cou pled and loosely coupled processors. It will be our goal to arrive at 

a efficient performance model for such kind of platforms using various computing primitves like 

sorting, searching, ranking and graph algorithms.  
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