Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, S Iss 2, 2022

An Analysis of Butterfly Diversity at St. Mary's College Thrissur Dalie Dominic A^{1*}, Meena K Cheruvathur²

¹Assistant Professor, Department of Zoology, St. Mary's College, Thrissur, Kerala, India. ² Assistant Professor, Department of Botany, St. Mary's College, Thrissur, Kerala, India. Email-¹ dalie.dominic.a@smctsr.ac.in

ABSTRACT:

Butterflies are sensitive species having very important role in ecosystem as pollinators and ecological indicators. They are vital for estimating quality and sustainability of the ecosystem. In the present study Butterfly diversity at St Mary's College, Thrissur, Kerala was investigated for the period from January 2016 to December 2019.

The results indicates that the campus has diverse butterfly fauna. 46 species of butterflies belonging to five families were recorded. Nymphalidae was dominant group with 19 species followed by Lycaenidae 7, Papilionidae with 9 species, Hesperidae with 5 and Pieridae with 6 species. On analysing the abundance status, it was found that 9 species were very common, 25 species were common, 7 were rare, 5 Very rare.

INTRODUCTION:

Nearly all animals have a relation to the environment, Schneck (1993). One of the most significant groups of insects that serve as both gardeners in nature and indicators of biodiversity are butterflies, Nair & Bandyopadhyay (2014). Butterflies are important for estimating quality and sustainability of the ecosystem. The importance of biological diversity as a key indicator of both global and local environmental change is now more widely acknowledged (Saha, *et al.*, 2015).

Human domination is inevitable but it has immensely altered earth's ecosystem (Vitousek *et al.*, 1997). Relationship between habitat loss and the probability of population extinction needs to be well understood for effective conservation efforts (Fahrig, 2001). A major factor for species decline especially the butterflies, is habitation destruction brought about by Pollution, land conversion and fragmentation (Collinge, 1996). Insects are extremely susceptible to pesticide use and pollution as it alter the population structure. The population of the species declines by unmanaged pesticide use and this too causes loss of biodiversity either directly or indirectly.

Butterflies and the stages of their life depend on particular host plants for nourishment. A garden encompassing these types of host plants and sufficient amount of nectar plants as their vital component would attract butterfly species. Therefore, the fundamental drive of establishing a butterfly gardens is to create an habitation that is most wanted for the butterflies which would otherwise be not welcoming them due to human interference.

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, S Iss 2, 2022

In this modern era, the idea of butterfly gardening in urban areas and human-altered biotopes (Angold *et al.*, 2006) has become extremely important, and popularizing environmental conservation might be easily achieved by instilling ideas of habitat preservation in the next generation. Therefore, ex situ butterfly conservation could be accomplished by establishing a butterfly garden by planting suitable host plants (Lamb & Allen, 2002, Levy and Connor (2004). In the present study the butterfly diversity at St.Mary's College, Thrissur was investigated. The Butterfly garden of the institution has abundant host plants and nectar plant diversity. There is a range of even the rare plants. Hence an anlaysis of Butterflies of the institution was done.

METHODOLOGY:

By making direct observations, chance walks, and opportunistic observations in the morning and the evening, when butterflies are most active, the butterflies on and near the college campus were catalogued. The diversity study was carried out over three years in all three seasons, from January 2016 to December 2019. Throughout the course of the study, every butterfly was watched and noted. With the use of the literature that is currently accessible, species identification was validated. Butterflies were divided into four groups depending on their abundance: VC (very common), C (common), R (rare) and VR (extremely rare).

RESULT AND DISCUSSION:

The present study indicates that the campus has diverse butterfly fauna. During the study period 46 species of butterflies belonging to five families were recorded. Among the five families Nymphalidae was found to be most dominant group with 19 species followed by Lycaenidae 7. Papilionidae was represented with 9 species, Hesperidae with 5 and Pieridae with 6 species. 9 species were very common, 25 species were common, 7 were rare, 5 Very rare.

The current analysis indicates that there are many different butterfly species present on campus. The most prevalent family was Nymphalidae, similar findings were seen in numerous past investigations (Elanchezhyan (2016), Daniel *et al.*, 2018). According to past research, the diversity and existence of butterflies are supported by the vegetation's composition (Sanjaya *et al.*, 2016).

Butterflies establish countless connections with abiotic and biotic variables in order to survive and expand. A pollinator is required for the reproduction of about 90% of plants, and as bee populations decline, the butterfly's role is increasingly important for all living things. The presence of host and larval plant species, occurrence impacts distribution of butterflies. With over 200 butterfly host and nectar plants, St. Mary's College's butterfly garden serves as a habitat for this web of life.

Various plants like Aristolochiae, Cassia, Citrus, Asclepcia, ornamental palms, Sesbania, Polyalthia, Nerium, Saracaasoka, Ricinus communis, Pongamia, Calotropis, Cinnamomum,

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, S Iss 2, 2022

Crotalaria retusa, Aegle marmelos, Michelia champaca, Crateva, Albizia, Bambusa, Flacourtia, Hygrophila and many others invite butterflies providing them safe food and shelter amidst the city skyscrapers. The presence of sufficient nectar plants correlates the occurrence of butterflies which have made the campus their home. The Butterfly garden promotes, propagates and protects native species of butterflies.

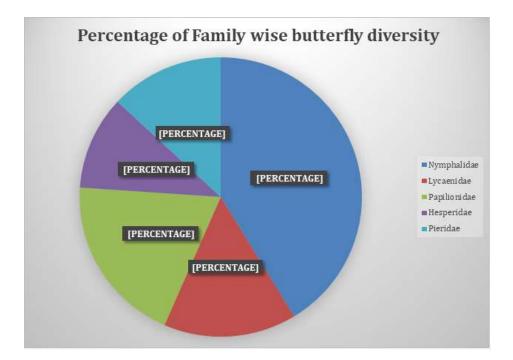
According to Sarma *et al.*, 2012, an academic institution campus with a rich plant diversity provides opportunity for species conservation. Increasing numbers of host and nectar plant species in the private gardens increases butterfly diversity (Pendl *et al.*, 2022, Nepali *et al.*, 2018). The urbanized habitat of the neighbourhoods also attract the butterflies to the campus to find suitable niches. In order to encourage biodiversity conservation, butterfly gardening is a conservation initiative that can be successful. Every home, place of business and industrial facility maintaining a butterfly garden would be a significant step toward improving the ecosystem's sustainability. This would offer tiny habitat units to support local butterfly populations.

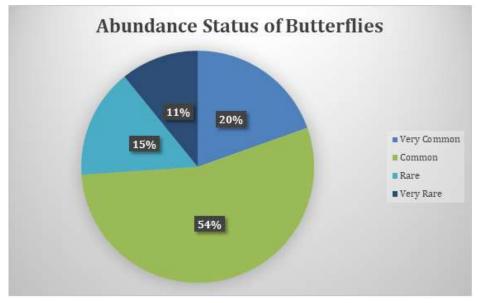
CONCLUSION:

Butterflies play a very important role in the food chain of many different creatures. The present study indicated that the institution has rich butterfly diversity including rare butterflies. Urbanisation, and loss of natural environments have caused severe threat to the species. Therefore planting of host and nectar plants are ideal for restoring habitat and conserving butterfly.

S.No	Family	Scientific Name	Common Name	Status
1.	Nymphalidae	Ariadne merione	Common castor	R
2.	Nymphalidae	Cupha erymanthis	Rustic	С
3.	Nymphalidae	Danaus chrysippus	Plain Tiger	R
4.	Nymphalidae	Euploea core	Common Indian Crow	VC
5.	Nymphalidae	Euthalia aconthea	Common baron	С
6.	Nymphalidae	Elymnias hypermnestra	Common palmfly	С
7.	Nymphalidae	Hypolimnas bolina	Great Indian egg fly	VR
8.	Nymphalidae	Hypolimnas misippus	Danaid egg fly	С
9.	Nymphalidae	Junonia atlites	Grey Pansy	VC
10.	Nymphalidae	Junonia lemonias	Lemon pansy	R
11.	Nymphalidae	Junonia iphita	Chocolate Pansy	VC
12.	Nymphalidae	Moduza procris	Commander	С
13.	Nymphalidae	Mycalesis perseus	Common Bushbrown	VC

Table I. List of butterflies recorded from St. Mary's College Thrissur


Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, S Iss 2, 2022


14.	Nymphalidae	Neptis jumbah	Common sailor	С
15.	Nymphalidae	Parthenos sylvia	Clipper	VR
16.	Nymphalidae	Tirumala limniace	Blue Tiger	C
17.	Nymphalidae	Parantica aglea	Glassy tiger	VR
18.	Nymphalidae	Ypthima baldus	Common five ring	C
19.	Nymphalidae	Ypthima huebneri	Common Four-ring	С
20.	Lycaenidae	Acytolepis puspa	Common hedge blue	С
21.	Lycaenidae	Castalius rosimon	Common pierrot	R
22.	Lycaenidae	Chilades lajus	Lime blue	С
23.	Lycaenidae	Jamides celeno	Common cerulean	С
24.	Lycaenidae	Loxura atymnus	Yam fly	VR
25.	Lycaenidae	Neopithecops zalmora	Quaker	С
26.	Lycaenidae	Talicada nyseus	Red pierrot	С
27.	Papilionidae	Graphium agamemnon	Tailed jay	С
28.	Papilionidae	Graphium doson	Common jay	С
29.	Papilionidae	Pachilopta hector	Crimson rose	VR
30.	Papilionidae	Pachliopta aristolochiae	Common rose	С
31.	Papilionidae	Papilio clytia	Common mime	VC
32.	Papilionidae	Papilio polytes	Common mormon	VC
33.	Papilionidae	Papilio demoleus	Lime Butterfly	С
34.	Papilionidae	Troides minos	Southern bird wing	С
35.	Papilionidae	Papilio polymnestor	Blue Mormon	С
36.	Hesperiidae	Borbo cinnara	Rice Swift	R
37.	Hesperiidae	Coladenia indrani	Tricolour pied flat	R
38.	Hesperiidae	Notocrypta paralysos	Common Banded Demon	R
39.	Hesperiidae	Sarangesa dasahara	Common Small Flat	С
40.	Hesperiidae	Udaspes folus	Grass Demon	С
41.	Pieridae	Catopsila pyranthe	Mottled emigrant	С
42.	Pieridae	Catopsilia pomana	Common emigrant	С
43.	Pieridae	Delias eucharis	Common jezebel	С
44.	Pieridae	Eurema blanda	Three spot yellow	VC
45.	Pieridae	Eurema brigitta	Small grass yellow	VC
46.	Pieridae	Leptosia nina	Psyche	VC

1254 | Page

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, S Iss 2, 2022

REFERENCES:

- Angold P.G., Sadler J.P., Hill M.O., Pullin A., Rushton S., Austin K., Small E., Wood B., Wadsworth R., Sanderson R. & Thompson K. 2006: Biodiversity in urban habitat patches. Sci. Total Environ. 360: 196–204.
- 2. Collinge SK (1996) Ecological consequences of habitat fragmentation: implications for landscape architecture and planning. Landsc Urban Plan 36:59–77
- 3. Daniel, J. A., Sankararaman, H., & Hegde, D. R. (2018). Butterfly diversity in Tamil Nadu agricultural university campus, Coimbatore, Tamil Nadu, India. Journal of Entomology and Zoology Studies, 6(4), 1354-1361.

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, S Iss 2, 2022

- 4. Elanchezhyan, K., Samraj, J. M., & Reuolin, S. J. (2017). Butterfly diversity at the agricultural college campus, Killikulam, Tami Nadu, India. Journal of Entomology and Zoology Studies, 5(5), 1389-1400.)
- 5. Fahrig L (2001) How much habitat is enough? Biol Conserv 100:65–74
- 6. Lamb, S., Chambers, S., & Allen, N. (2002). Create a Butterfly Garden. Oregon State University, Extension Service.
- Levy, J.M., Connor, E.F. Are gardens effective in butterfly conservation? A case study with the pipevine swallowtail, Battus philenor . Journal of Insect Conservation 8, 323– 330 (2004). https://doi.org/10.1007/s10841-004-0796-7
- 8. Nair, A. V., Mitra, P., & Bandyopadhyay, S. A. (2014). Studies on the diversity and abundance of butterfly (Lepidoptera: Rhopalocera) fauna in and around Sarojini Naidu college campus, Kolkata, West Bengal, India. Journal of Entomology and Zoology Studies, 2(4), 129-134.
- 9. Nepali, K. B., Lamichhane, D., & Shah, S. (2018). Diversity of butterfly and its relationship with plants in National Botanical Garden, Godawari, Lalitpur, Nepal. Journal of Plant Resources, 16(1), 124.
- 10. Pendl, M., Hussain, R. I., Moser, D., Frank, T., & Drapela, T. (2022). Influences of landscape structure on butterfly diversity in urban private gardens using a citizen science approach. Urban Ecosystems, 25(2), 477-486.
- 11. Saha, M., Sarkar, I., Barik, L., Das, R. P., & Dey, S. R. (2015). Butterfly diversity of Berhampore girls' college campus, Murshidabad, West Bengal, India: a preliminary assessment. The Beats of Natural Sciences, 2, 1-12.)
- 12. Sanjaya, Y., Suhara, S., & Rochmayanti, Y. (2016). Role of plant diversity to existance of butterfly in Botanical Garden UPI Bandung Indonesia. Journal of Entomology and Zoology Studies, 4, 331-335.
- Sarma, K., Kumar, A., Devi, A., Mazumdar, K., Krishna, M., Mudoi, P., & Das, N. (2012). Diversity and habitat association of butterfly species in foothills of Itanagar, Arunachal Pradesh, India. Cibtech Journal of Zoology, 1(2), 67-77.
- 14. Schneck, M. (1993). Creating a butterfly garden. Simon and Schuster.
- 15. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth's ecosystems. Science 277:494–499

