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Abstract 

Bayesian inference is the process of fitting a probability model to a set of data 

and  summarizing the result by a probability distribution on the parameters of the model  and on 

unobserved quantities such as predictions for new observations. Bayesian prediction plays a 

significant part in different extents of applied  statistics. Bayesian approach has many benefits in 

statistical modelling and data  analysis. It offers a system of validating the method of knowledge 

from data to  update beliefs in accord with recent notions of knowledge synthesis. 

Bayesian  approaches usually need less sample data to attain the same quality of 

implications  than approaches based on sampling theory, which become very significant in the 

case  of expensive testing processes. Bayesian inference has been used in various fields  such as 

computer science, reliability analysis, etc.Humans, being a part of the ecosystem, have their own 

roles to be carried out.  The human body is an integrated system, which performs different 
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functions excretion, respiration, circulation, digestion, endocrine, intellectual and 

locomotion.  The homeostasis is well maintained so that every organ performs its 

respective  functions. Lungs chiefly help in the oxygenation of blood. Kidney excretes 

the  metabolic end products. Heart pumps so that blood transfers oxygen to tissues and  takes up 

carbon dioxide, which is then excreted through the lungs. The nervous  system chiefly 

coordinates all the functions, makes one perceive sensations and also  carry out movements. The 

food one eats must be digested and absorbed to give energy for one’s daily needs.Hence when 

any of these function fail, the entire system gets collapsed as they are closely interrelated.  

INTRODUCTION  

The human system has its own immune barriers to protect itself against infections, but 

once the infection sets in, the immune mechanisms come into action.  The immune system 

principally includes lymphocytes and other leucocytes, antigen presenting cells and their 

chemical mediators. One of the most important infectious  diseases with high mortality rate in 

developing countries is Tuberculosis.  Tuberculosis (TB) is the seventh most common disease in 

the world. India ranks first  in the absolute number of incident TB cases diagnosed every year. 

Tuberculosis is  instigated by the bacteria named Mycobacterium tuberculosis. The disease is 

highly  contagious which usually spreads by air droplets and is frequently encountered 

in  immune compromised individuals and in lower socio-economic classes due to  overcrowding 

and malnutrition.   

The changing aspects of contagious diseases depends on the probability of  coincidence 

of hosts and pathogens and the spatial distribution among them. The  communication of 

contagious pathogens from affected to vulnerable masses  decreases when the space between 

persons increase. The disease Tuberculosis, falls  in the same category. It depends on spatial 

accumulation or gathering. The spatial  correlation depends on the amount of mingling of the 

population in big cities with  huge population of highly movable entities. In this thesis, Bayesian 

approach is  implemented in modelling the effects of TB and forecasting the spatial distribution 

of  TB using various methods.  
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Previous disease mapping works were based on collating, mapping and  analysing 

prevalence or incidence data with conventional statistical approaches,  which are affected by 

random variation due to population variability and a loss of  statistical power when cases are 

assigned to subgroups (e.g. several geographic  subareas). Differences in geographic distribution 

due to chance may be incorrectly  interpreted as true variation of epidemiological interest. The 

observed extreme values  may not reflect the true spatial distribution of the disease, instead may 

reflect those  of the population area. The Bayesian method can overcome these problems as it 

can  model the random and true variation separately and is an attractive alternative to 

the  frequentist approach. Bayesian methods can provide some shrinkage and spatial  smoothing 

of raw standardized incidence ratio estimates, which are strongly  influenced by the size of the 

population at risk, resulting in a noisy and blurred  picture of the true unobserved risks. 

Consider that the data values z = ( z1,.....zn ) are found independently. The  likelihood 

function is given by  

 

Once the data have been observed, in order to obtain the posterior distribution p( ф/z) and 

the probability distribution  

The subjective probability is based on the past experiences, and it might be  unrealistic. 

Bayesian approach takes into account any prior knowledge of the  experiment that the statistician 

has, and it is one application of the principle of  statistical inference that may be called Bayesian 

statistics. The prior distribution reflects the subjective belief of the random variable before the 

sample is drawn,  while the posterior distribution is the conditional distribution if the random 

variable  regulates probabilities of events in the following manner:  

P (H0 | A)= P( A| H0 ) P (H0 )|P (A) where H0denotes the null hypothesis, that 

was  associated before the new event A becomes existing. P(H0) is known as the 

prior  probability of H0. P (A| H0 ) is the conditional probability of considering the event A  given 

that the hypothesis H0 is true. It is known as the likelihood function when  P(A|H0) is expressed 
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as a function of H0 given A. The marginal probability of P(A)  of A is determined as the sum of 

the product of all probabilities of mutually exclusive  hypotheses and corresponding conditional 

probabilities:  

 

For continuous case, the posterior distribution is  

 

 

BAYESIAN INFERENCE 

In reliability analysis, hazard rate plays an indispensable role to characterize life 

phenomena. In fact, the hazard rate usually is more informative about the underlying mechanism 

of failure than the other representatives of a lifetime distribution. Technically, failure or hazard 

rate represents the propensity of a device of age t to fail in the small interval of time t to t + dt. 

The parametric models, such as gamma, Weibull, and log-normal distribu tions, which are 

commonly used lifetime distributions display monotone fail ure rates. However, many physical 

phenomena exhibit failure rates which are non-monotonic. For example, the failure pattern of 

many mechanical and elec tronic components comprise of three stages: initial stage (or burn-in) 

where failure is high at the beginning of the product life cycle due to design and manufacturing 

problems, and decreases towards a constant level, the middle stage with an approximately 

constant failure rate, which is followed by a final stage (or wear-out phase), from where the 

failure rate starts to increase. Such failure rates are usually termed as bathtub (BT) or U shaped. 
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The aforemen tioned models which allow only monotone failure rates are unable to produce 

bathtub curves and thus cannot adequately interpret data with this character. Bathtub models are 

possibly more realistic models than monotone failure rate models and have been widely accepted 

in the field of medicine and are partic ularly useful in reliability related decision making and cost 

analysis.  

 

Characterization of failure rate function  

The role of the parameter γ in determining different shapes of the failure rate function can 

be studied under two situations:  

Case 1: γ ≥ 1  

i  For any t > 0, h0(t) > 0, thus, h(t) is an increasing function. 

 

Thus, we see that the hazard function is exponentially increasing for large t and has a 

bathtub-shape with achieving a minimum value at t0 when 0 < γ < 1. These two properties make 

it a useful alternative to Weibull distribu tion for modeling lifetimes. Figure 2.2 illustrates h(t) 

with various values of parameters γ and α.  
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Figure 2.2: Plot of the failure rate function h(t) with α = 1 and γ changing from 0.4 to 

1.75. It is evident that the hazard function for γ < 1 assumes a bathtub shape while for γ ≥ 1, it 

increases exponentially.  

2.3 Model formulation  

The Bayesian analysis of concerned reliability model begins with the specifica tion of the 

likelihood function. For this, let us assume that t : t1, t2, . . . , tn be the observed lifetimes from 

exponential power model (2.1). The corresponding likelihood function can be defined as  

 

 

The next step in Bayesian analysis is to choose a prior distribution that expresses the uncertainty 

about the parameters of the model, before the data is observed. We considered an independent 

and weakly informative prior distributions for the parameters. Both the positive parameters are 

assumed to be half-Cauchy distributed according to their hyperparameters, scale = 25 and are 

denoted by  
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3.2 Terms and concepts  

We here define some of the important terms and concepts frequently used in the design of 

experiments;  

(a) Experiment is a test or series of runs in which purposeful changes are made to the 

input variables of a process or system so that we may observe and identify the reasons for 

changes that may be observed in the response.  

(b) Run is an experimental condition or factor level combination at which responses are 

measured.  

(c) Experimental units are the recipients of the experimental treatments.  

(d) Treatments are the different procedures we want to compare. These could be different 

voltages to which some electronic devices are subjected or the different drug therapies given to a 

set of patients.  

(e) Factor is an explanatory variable that can be manipulated by the exper imenter. Each 

factor has two or more levels (i.e., different values of the factor). Technically, a combination of 

factor levels that is assigned to the experimental units is termed as treatment.  

(f) Response is the outcome that we observe after applying the treatment to an 

experimental unit.  

(g) Randomization is a schedule for allocating treatment material and for conducting 

treatment combinations in a designed experiment, such that the conditions in one run neither 

depend on the conditions of the previous run nor predict the conditions in the subsequent runs. 

Other aspects of an experiment can also be randomized: for example, the order in which units are 

evaluated for their responses. 

(h) Experimental error is the random variation present in all experimental results. 

Different experimental units will give different responses to the same treatment, and it is often 
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true that applying the same treatment over and over again to the same unit will result in different 

responses in different trials.  

Next, we consider the Bayesian regression analysis of a reliability experiment when there 

is a single factor involved.  

BAYESIAN COMPUTATIONAL TOOLS 

Some computational challenges  

The starting point of a Bayesian analysis being the posterior distribution, let us recall that 

it is defined by the product  

π(θ|x) ∝ π(θ)f(x|θ)  

where θ denotes the parameter and x the data. (The symbol ∝ means that the functions on 

both sides of the symbol are proportional as functions of θ, the missing constant being a function 

of x, m(x).) The structures of both θ and x can vary in complexity and dimension, although we 

will not discuss the non parametric case when θ is infinite dimensional, referring the reader to 

Holmes et al. (2002) for an introduction. The prior distribution is most often available in closed 

form, being chosen by the experimenter, while the likelihood function f(x|θ) may be too involved 

to be computed even for a given pair (x, θ). In special cases where f(x|θ) allows for a 

demarginalisation representation  

 

where g(x, z|θ) is a (manageable) probability density, we will call z the missing data. 

However, the existence of such a representation does not necessarily implies it is of any use in 

computations. (We will encounter both cases in Sections 4 and 5.)  

Since the posterior distribution is defined by  
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a first difficulty occurs because of the normalising constant: the denominator is very rarely 

available in closed form. This is an issue only to the extent that the posterior density is defined 

up to a constant. In cases where the constant does not matter, inference can be easily conducted 

without the constant. Cases when the constant matters include testing and model choice, since 

the marginal  

likelihood  

 

is central to the Bayesian procedures addressing this inferential problem. Indeed, when 

comparing two models against the same dataset x, the prefered Bayesian solution (see, e.g., 

Robert, 2001, Chapter 5, or Jeffreys, 1939) is to use the Bayes factor, defined as the ratio of 

marginal likelihoods 

 

and compared to 1 to decide which model is most supported by the data (and how much). Such a 

tool—quintessential for running a Bayesian test—means that for almost any inference problem—

barring the very special case of conjugate priors— there is a computational issue, not the most 

promising feature for promoting an inferential method. This aspect has obviously been addressed 

by the community, see for instance Chen et al. (2000) that is entirely dedicated to the problem of 

approximating normalising constants or ratios of normalising constants, but I regret the issue is 

not spelled out much more clearly as one of the major computational challenges of Bayesian 

statistics (see also Marin and Robert, 2011).  

Example 1 As a benchmark, consider the case (Marin et al., 2011a) when a sample (x1, . . 

. , xn) can be issued either from a normal N (µ, 1) distribution or from a double-exponential L(µ, 1/
√2) 

distribution with density  
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(This case was suggested to us by a referee of Robert et al., 2011, however I should note 

that a similar setting opposing a normal model to (simple) ex ponential data used as a benchmark 

in Ratmann (2009) for ABC algorithms.) Then, as it happens, the Bayes factor B01(x1, . . . , xn) is 

available in closed form, since, under a normal µ ∼ N (0, σ2) prior, the marginal likelihood for 

the normal model is given by  

 

 

and, for the double-exponential model, by (assuming the sample is sorted)  
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with obvious conventions when i = 0 (x0 = −∞) and i = n (xn+1 = +∞). To illustrate the 

consistency of the Bayes factor in this setting, Figure 1 represents the distributions of the Bayes 

factors associated with 100 normal and 100 double exponential samples of sizes 50 and 200, 

respectively. While the smaller samples see much overlay in the repartition of the Bayes factors, 

for 200 observations, in both models, the log-Bayes factor distribution concentrates on the proper 

side of zero, meaning that it discriminates correctly between the two distributions for a large 

enough sample size.  

Another recurrent difficulty with using posterior distributions for infer ence is the 

derivation of credible sets— the Bayesian version of confidence sets (see, e.g., Robert, 2001)—

since they are usually defined as highest poste rior density regions:  

 

Fig 1. Repartition of the values of the log Bayes factors associated with 100 normal 

(orange) and 100 double-exponential sam ples (blue) of size 50 (left) and 200 (right), estimated 

by the default R density estima tor.  

Cα(x) = {θ; π(θ|x) ≥ κα(x)} ,  

where the bound kα is determined by the credibility of the set  

                   P(θ ∈ Cα(x)|x) = α . 

While the normalisation constant is irrelevant in this problem, determining the collection 

of parameter values such that π(θ)f(x|θ) ≥ κα(x) and calibrating the  lower bound κα(x) on the 

product π(θ)f(x|θ) to achieve proper coverage are non-trivial problems that require advanced 

simulation methods. Once again, the issue is somehow overlooked in the literature.  

http://www.ijfans.org/


e-ISSN 2320 –7876 www.ijfans.org 
Vol.11, Iss.9, Dec 2022 

© 2012 IJFANS. All Rights Reserved Research Paper 

 

 

 

 
  
  
     

1364 
 

While one of the major appeals of Bayesian inference is that it is not reduced to an 

estimation technique—but on the opposite offers a whole range of inferen tial tools to analyse 

the data against the proposed model—, the computation of Bayesian estimates is nonetheless 

certainly one of the better addressed compu tational issues. This is especially true for posterior 

moments like the posterior mean Eπ[θ|x] since they are directly represented as ratios of integrals  

 

The computational problem may however get involved for several reasons, in cluding for 

instance  

– the space Θ is not Euclidean and the problem imposes shape constraints (as in some 

time series models);  

– the dimension of Θ is large (as in non-parametrics);  

– the estimator is the solution to a fixed point problem (as in the credible set definition);  

– simulating from π(θ|x) is delicate or even impossible;  

the latter case being in general the most challenging and thus the most studied, as the 

following sections will show.  

3. Monte Carlo methods  

Monte Carlo methods have been introduced by physicists in Los Alamos, namely Ulam, 

von Neumann, Metropolis, and their collaborators in the 1940’s (see Robert and Casella, 2011). 

The idea behind Monte Carlo is a straightforward ap plication of the law of large numbers, 

namely that, when x1, x2, are i.i.d. from the distribution f, the empirical average  converges 

(almost surely) to Ef [h(X)] 
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when T goes to +∞. While this per spective sounds too simple to apply to complex problems—

either because the simulation from f itself is intractable or because the variance of the empirical 

average is too large to be manageable—, there exist more advanced exploitations of this result 

that lead to efficient simulation solutions.  

Example 1 (bis) Consider computing the Bayes factor  

B01(x1, . . . , xn) = m0(x1, . . . , xn)/m1(x1, . . . , xn)  

by simulating a sample (µ1, . . . , µT ) from the prior distribution, N (0, σ2). The 

approximation to the Bayes factor is then provided 

by                                                                                                                                                        

                                                                                                        

 

given that in this special case the same prior and the same Monte Carlo samples can be 

used.Figure 2 shows the convergence over T = 105iterations, along with the true value. The 

method exhibits convergence. 

 

Fig 2. Convergence of a Monte Carlo approximation of B01(x1, . . . , xn) for a 

normalsample of size n = 19, along with the true value (dash line). 
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The above example can also be interpreted as an illustration of importance sampling, in 

the sense that the prior distribution is used as an importance function in both inte grals. We recall 

that importance sampling is a Monte Carlo method where the quantity of interest Ef [h(X)] is 

expressed in terms of an expectation under the importance density g,  

Ef [h(X)] = Eg[h(X)f(X)/g(X)] , 

 which allows for the use of Monte Carlo samples distributed from g. Although 

importance sampling is at the source of the particle method (Doucet et al., 2001), I will not 

develop this useful sequential method any further, but in stead briefly introduce the notion of 

bridge  

sampling (Meng and Wong, 1996) as it applies to the approximation of Bayes factors  

 

(and to other ratios of integrals). This method handles the approximation of ratios of 

integrals over identical spaces (a severe constraint), by reweighting two samples from both 

posteriors, through a well-behaved type of harmonic average.  

More specifically, when Θ0 = Θ1, possibly after a reparameterisation of both models to 

endow θ withthe same meaning, we have  

  

where θ0,1, . . . , θ0,n0 and θ1,1, . . . , θ1,n1 are two independent samples coming from the 

posterior distributions π0(θ|x) and π1(θ|x), respectively. (This identity holds for any function α 

guaranteeing the integrability of the products.) How ever, there exists a quasi-optimal solution, 

as provided by Gelman and Meng (1998):  
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While this optimum cannot be used—given that it relies on the normalising constants of 

both π0(·|x) and π1(·|x)—, a practical implication of the result resorts to an iterative construction 

of α?. We gave in Chopin and Robert (2010) an alternative representation of the bridge factor 

that bypasses this difficulty (if difficulty there is!).  While the number of roots is always p, the 

number of (non-conjugate) complex roots varies between 0 (meaning no complex root) and 

bp/2c. This representation of the model thus induces a variable dimension structure in that the 

parameter space is then the product (−1, distributions on (−1, 1) and B(0, 1), respectively. 1)r × 

B(0, 1)p−r/2, where B(0, 1) denotes the complex unit ball and r is the number of real valued roots 

λiB. The prior distributions on the real and (non-conjugate) complex roots are the uniform. 
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