
IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 
        Research paper                  © 2012 IJFANS. All Rights Reserved, UGC CARE Listed ( Group -I) Journal Volume 11,  Iss 10, 2022 

 

2537  
 
 

 

Impact analysis in object-oriented systems for 

Dynamic Coupling Measures 

L. K Suresh Kumar 

Associate Professor, Department of Computer Science 

UCE, Osmania University, suresh.l@uceou.edu

  

Abstract— In recent years, researchers have explored the 

link between coupling and object-oriented programme quality. 

Several studies have shown correlations between class-level 

coupling and fault-proneness. Static code analysis quantifies 

coupling. Statically analysing code helps monitor security, 

reliability, performance, and maintainability. Static code 

analysis exposes structural problems and prevents entire 

classes of issues when done correctly. Most current work was 

done on non-object oriented code, and dynamic code analysis is 

more expensive and difficult. This reliance on static analysis 

might be troublesome for current software systems, because 

dynamic binding existed before OO. 
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I. INTRODUCTION 

Coupling, sometimes known as dependence, is a term 
used in the field of computer science to refer to the degree to 
which one software module is dependent on all of the other 
modules. When paired with high cohesiveness, low coupling 
helps promote the overall goals of high readability and 
maintainability in a computer system. This is because low 
coupling is frequently a symptom of a well-structured 
computer system and a good design. 

The fundamental objective of coupling measurements is 
to quantify the degree to which a class is related to other 
classes. These metrics are often derived from some type of 
static code analysis. For instance, class A is considered to be 
linked to class B if one of A's methods invokes one of B's 
methods. As a result of the fact that coupling measurements 
are used to assist software developers, testers, and 
maintainers in reasoning about the complexity of software 
and the quality attributes of software, it has significant 
applications in the software development and maintenance 
fields. There has been a lot of research done on coupling 
metrics, and they have been put to use to help maintainers 
with a variety of tasks, including impact analysis, 
determining the fault-proneness of classes, fault prediction, 
ripple effects, and changeability, to name just a few [5, 6, 11, 
12, 9]. Therefore, coupling metrics aid developers, testers, 
and maintainers in thinking about the programme and in 
projecting the demands for code inspection, testing, and 
debugging. 

II. METHODS FOR MEASURING DYNAMIC COUPLING 

The results of dynamic analysis, which are now being 
used to gather dynamic coupling measures, indicate that 
these measures are superior both as markers of complexity 
and as predictors of the quality characteristics they measure. 

Only "static" couplings are taken into consideration by 
the traditional coupling measurements [5,7]. They may 
considerably underestimate the complexity of the software 
and misunderstand the necessity for code inspection, testing, 
and debugging since they do not account for "dynamic" 
couplings that are the result of polymorphism. Take into 
consideration the typical bridge construction [8] seen in 
figure 1. Traditional coupling measures [5,7] would only 
count a single coupling because of a polymorphic call to 
imp.DevM() in method A:m, and that coupling would be a 
coupling of A to Imp. In point of fact, the actual complexity 
of the call is significantly higher because the polymorphic 
call can couple "dynamically" each concrete A to each 
concrete Imp for a total of six couplings: 'A1,Imp1', 
'A1,Imp2', 'A1,Imp3', 'A2,Imp1', 'A2,Imp2', and 'A2,Imp3'. 
In addition, the actual complexity of the call is significantly 
higher because the poly 

Arisholm et al. do in-depth statistical analysis, which 
demonstrates that these measures are superior than standard 
coupling measures in terms of their ability to indicate the 
level of complexity present and to predict the quality of 
certain qualities. 

III. ANALYSIS OF THE STATIC CLASS 

However, dynamic analysis has a number of drawbacks, 

including the following: 

i) it is relatively slow, (ii) it requires a complete programme, 

and (iii) it produces incomplete results as the couplings 

output by the dynamic analysis are valid for particular 

inputs and executions of the programme.  

The utilisation of static analysis as an alternative to dynamic 

analysis for the computation of dynamic coupling measures 

is the purpose of the entire body of work that has been done. 

It's possible that the static analyses discussed in this work 

offer numerous benefits that dynamic studies don't have[1]: 

I they are applicable in real-world situations, (ii) they are 

able to operate on incomplete programmes, and (iii) they 

generate outcomes that are consistent across all programme 

executions. 

A technique known as "programme analysis" 

examines a program's source code in order to draw 

conclusions about how it will behave when it is executed. 

Compiler optimization has historically been accomplished 

through the use of programme analysis. An example of this 

would be an analysis that looked at the programme, 

determined which expressions produced the same result, and 

then rewrote the code to get rid of any redundant 

computations; in most cases, this results in the programme 

running more quickly. In addition, programme analysis may 
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be used in a broad number of applications within the tools 

used to improve the productivity and quality of software. 

We present a system for the static analysis of tightly typed 

programming languages such as Java, which allows for the 

computation of dynamic coupling measures derived from 

[3]. This method is successful when used to unfinished 

programmes. Because it is necessary to be able to conduct 

individual analyses of software components, this is a trait 

that is considered to be very significant. 

At the lower end of the cost/precision continuum, the 

framework with Class Hierarchy Analysis (CHA) and Rapid 

Type Analysis (RTA), two well-known class analyses, is 

launched. On a number of different aspects, empirical 

results are now being offered. An evaluation of precision is 

given, which demonstrates that analyses based on RTA 

achieve almost perfect precision. This means that it 

computes almost exactly the same couplings as would have 

been identified dynamically with the most comprehensive 

suite of test cases written on top of the component had it 

been subjected to the same testing. Based on these findings, 

it appears that dynamic coupling measures may be 

quantified correctly using a method that is both 

straightforward and affordable: static analysis. The 

following are some of the contributions made by this work: 

For the purpose of computing dynamic coupling measures, 

we suggest using a framework for static analysis that is 

parameterized by class analysis. Our analysis framework is 

built to handle programmes that are only partially complete. 

We offer an empirical research that examines the effects of 

two different instantiations of the framework on a number of 

different Java components. 

The Argument in Favor of Using Static Analysis: By 

utilising dynamic analysis, Arisholm et al. [3] are able to 

capture dynamic coupling measures; nevertheless, they note 

that dynamic analysis does have certain limitations. First, 

because it needs numerous steps, it is a somewhat lengthy 

process. Second, the process of designing and constructing 

an instrumentation framework is rather difficult from an 

engineering standpoint. Third, in order to do a dynamic 

analysis, a whole programme is always necessary. Fourth, 

because the results that are acquired are dependent on 

certain iterations with specific inputs, it is possible that the 

results that are obtained are insufficient. 

 
Fig 1 :Bridge Structure 

 

Figure 1 depicts two different ways to instantiate A1: the 

first uses Imp1, while the second uses Imp2. Due to the 

execution of the two clients, the dynamic couplings 

'A1,Imp1' and 'A1,Imp2' will be counted as being due to the 

call imp.DevM. (). As a result, the dynamic analysis won't 

take into account those four legitimate couplings. In order to 

accurately capture all of the possible dynamic couplings that 

are a result of this call, one would require at least six clients 

and six runs. 

For the aim of computing dynamic coupling measures, static 

analysis [14], and in particular class analysis, provides a 

potential alternative to dynamic analysis as an option to 

consider. [Case in point:] One may get an approximation of 

the probable classes of each reference variable and reference 

object field by using class analysis, and then use that 

information to reason about the possible dynamic couplings. 

When it comes to computing dynamic coupling 

measurements, static analysis provides a number of 

significant benefits over dynamic analysis. To begin, the 

dynamic studies that are not included in this article are 

likely to be substantially less useful and far more expensive 

than the static analyses that are. Second, these analyses are 

simple to apply; it is likely that they are used for the sake of 

important activities such as the development of call graphs 

since they are straightforward to do. Third, the static 

analysis that was looked at may be modified to function on 

incomplete programmes (also known as software 

components). This is an important advantage. In the fourth 

place, the static analysis is conservative, which means that 

any and all feasible run-time couplings will definitely be 

recorded. This is a promise. 

Static analysis, on the other hand, has the potential to be 

unduly cautious and indicate infeasible couplings. This is 

because infeasible couplings are those that cannot take place 

during any execution of the programme. 

 

IV. PROBLEM STATEMENT 

Our study is geared toward the development of a static 
analysis that is capable of accurately computing dynamic 
coupling measures, and the analysis must be able to function 
on incomplete programmes. The analysis receives as input a 
set of interacting Java classes denoted by the notation Cls. 
The set of accessible classes is a subset of Cls; these are 
classes that may be accessed by unknown client code from 
outside of Cls. This subset of Cls is identified as the set of 
accessible classes. These types of client code are only able to 
access the fields and methods of Cls that have been defined 
in some accessible class. The fields and methods that have 
been declared in accessible classes are referred to as 
boundary fields and boundary methods. 

A.  Methods for Measuring Dynamic Coupling 

The object coupling metrics that capture polymorphic 
interactions are the primary focus of this body of work. 
When the dynamic analysis comes across an execution of 
method m1 with a receiver of type C1 and, during the course 
of this execution, call site I in method m1 invokes method 
m2 with a receiver of class C2, the measure of highest 
granularity, which is denoted by IC OD in [2], records a 
tuple that reads "C1,m1,I,C2,m2." Remember the example 
from Figure 1 and make the assumption that the number 1 is 
in the call site imp.DevM() in method A:m. The dynamic 
analysis, assuming that there are tests that assure complete 
coverage, would report the following IC OD tuples for call 
site 1: 

〈A1,A:m,1,Imp1,Imp1:DevM()〉 

〈A1,A:m,1,Imp2,Imp2:DevM()〉 
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〈A1,A:m,1,Imp3,Imp3:DevM()〉 

〈A2,A:m,1,Imp1,Imp1:DevM()〉 

〈A2,A:m,1,Imp2,Imp2:DevM()〉 

〈A2,A:m,1,Imp3,Imp3:DevM()〉. 

The measure of intermediate granularity, which is 
designated by the symbol IC OM in [3], records tuples with 
the call site index I removed from the IC OD tuple. These are 
the tuples C1,m1, and C2,m2. The measure with the smallest 
amount of granularity, which is designated by the symbol IC 
OC in [3], keeps track of tuples with the callee method 
removed from the IC OM tuple. It is very clear that IC OD 
incorporates IC OM, and IC OM incorporates IC OC. 

It is possible to compute a measure for each class by 
making use of these tuples. For instance, the IC OD measure 
for class C is equal to the number of tuples for which the 
caller method m1 is a method declared in C. 

 

B. Discussion 

In order to meet the requirements of additional problem 
definitions that call for an analysis of incomplete 
programmes, we use the following constraint and standard 
[10]. Only the executions in which the invocation of a 
boundary method stays within Cls, meaning that all of its 
transitive callees are likewise located within Cls, are taken 
into consideration by us. When we take into account the 
prospect of undiscovered subclasses, it is possible that any 
instance calls made from Cls will be "redirected" to 
undiscovered external code, which might have an impact on 
the coupling inference. Therefore, Cls is expanded to 
encompass not just the classes that offer functionality for 
components but also all additional classes that are referenced 
in a transitive manner. In the tests described in Section 5, we 
included all classes that were referred to by Cls in a circular 
fashion. This strategy confines analytical information to the 
"known world" as it exists at the moment; in other words, the 
knowledge may become obsolete in the future as a result of 
the addition of new subclasses to the Cls. 

V. AN ANALYSIS OF THE FRAGMENT CLASSES FOR THE 

DYNAMIC COUPLING MEASURES  

Class analysis is a process that identifies the object 
classes to which a certain reference variable or field may 
point. This may be done by looking at the values of the 
variable or field. 

When arbitrary client code is written on top of Cls, the 
knowledge obtained from class analysis is utilised to provide 
an approximation of the set of IC OD coupling tuples that 
can occur. In order to accomplish this, the class analysis 
solution is utilised to generate an approximation of the set of 
potential classes for the caller as well as the set of possible 
classes for the callee. In this study, we examine the 
calculation of dynamic coupling measures based on two 
common and straightforward class analyses: Class Hierarchy 
Analysis (CHA) [13] and Rapid Type Analysis (RTA) [13]. 
Both of these analyses are widely known. 

The CHA method is the most basic type of class analysis. 
The structure of the class hierarchy is investigated by CHA 
in order to ascertain the many ways in which polymorphic 
variables and fields may be bound. An implementation of 

CHA will normally make the assumption that there is an 
entire programme, which means that there is a main method 
that serves as the beginning of the execution of the 
programme; it will begin at main and keep a collection of 
methods R that are available from there. Whenever CHA 
discovers a method that can be reached, it investigates the 
call locations included inside that method. It does this by first 
approximating the available run-time classes for r based on 
the hierarchy, and then for each C it determines the suitable 
run-time target mj based on C and the compile-time target m. 
This process is repeated for each call site l = r.m(...). R is 
expanded by one for every one of these mj. 

RTA is an additional straightforward method of class 
analysis. It is an improvement over CHA since it takes into 
consideration the classes that are actually instantiated in the 
application. The process begins with an exercise known as 
Class Hierarchy Analysis, which produces a call graph. It 
does this by using information about the classes that have 
been created to further minimise the number of executable 
virtual functions, which in turn reduces the size of the call 
graph. 

RTA operates on the assumption that there is a whole 
programme and begins execution with the main method as 
the first accessible method. RTA will investigate both the 
call sites and the instantiation sites inside an accessible 
method whenever one of those methods is discovered. In a 
nutshell, the RTA solution for a reference variable or a 
reference object field is the collection of instantiated classes 
that are compatible with the type that was defined for it. 

A. Analysis of the Fragment Class 

Class analyses are often conceived of as whole-program 
analyses. This means that they take a full programme as their 
input and generate a class analysis solution that represents 
bindings across the entirety of the programme as their output. 
Nonetheless, the problem that is going to be looked at in this 
work calls for a class analysis of a portion of the programme. 
The analysis has to approximate dynamic couplings that may 
happen across various executions of any client code built on 
top of the classes that make up the input, and the input itself 
is a collection of classes called Cls. In order to solve this 
issue, we have resorted to a method known as fragment 
analysis, which is an overarching strategy. Instead of 
working on an entire programme, fragment analysis is 
performed on a portion of that programme; in our example, 
that portion is the collection of classes known as Cls. 

The fragment analysis will first provide a fake main 
method that will act as a placeholder for client code that will 
be put on top of Cls. Intuitively, the fake main acts as a 
simulation of the probable flow of classes between the client 
code and Cls. After that, the fragment analysis[32] binds 
main to Cls and makes use of some whole-program class 
analysis engine to generate class analysis information. This 
information summarises the impacts that may be caused by 
arbitrary clients. 

B. The Calculation of Static and Dynamic Coupling 

Measures 

Input Methods: the collection of methods that may be 
accessed 

Statements in Methods Set, or Stmt for short. 
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Cs: Vars → P(Classes) output Dyn: Cls × Methods × I 

× Cls × Methods  

i. foreach virtual call si: r.m (...) s.t.r. equals this  

ii. if si is included in the static procedure C1:n, then... 

iii. add {〈C1, n, I C2, target(C2, m)〉 | C2 ∈ Cs(r) ∧ 

C1 = C2} to Dyn 

iv. otherwise if the si variable is included within the n 
instance method (n can be constructor) 

v. add {〈C1, n, I C2, target(C2, m) 〉  | C1 ∈ 

Cs(thisn) ∧ C2 ∈ Cs(r) ∧ C1 = C2 } to Dyn [6] 

for each static call, enter C2.m in the si variable (...) 

vi. If si is included within the static method C1:n, then 
C1 Equals C2. 

vii. add 〈C1, n, I C2, m〉 to Dyn 

viii. otherwise, if si is included within instance method n 
(n can be constructor) 

ix. add {〈C1, n, I C2, m〉 | C1 ∈ Cs(thisn) ∧ C1 = 

C2 } to Dyn 

The technique depicted is responsible for computing 
Dyn, which is the collection of tuples C1,n,i,C2,m that 
provides an approximation of the various dynamic couplings 
that can occur when arbitrary client code is written on top of 
Cls. The class analysis variable, Cs, is used to set the 
parameters for the algorithm. The accuracy of the 
computation of the dynamic measures is directly 
proportional to the accuracy of the class analysis that lies 
behind it. If the class analysis is more exact, then the set of 
couplings will also be more precise. This is because a more 
precise class analysis will result in the solution having fewer 
classes for each reference variable. 

VI. RESULTS  

RTA is demonstrably superior to CHA in terms of accuracy. 

These results make the distinction between the granularity 

levels of the three object coupling measures abundantly 

clear; for the majority of components, the IC OD is a 

sizeable amount greater than the IC OM, and the IC OM is a 

sizeable amount larger than the IC OC. This accurately 

depicts the organisation of the code. It is common for the 

same virtual call to appear multiple times within the same 

method at different call sites. When the call site is dropped 

from the tuple, previously distinct tuples are treated as one, 

and as a result, there is a drop from IC OD to IC OM. This 

is because when the call site is dropped, previously distinct 

tuples are treated as one. When the callee is removed from 

the tuple, separate tuples are combined into one, which is 

what causes the change from IC OM to IC OC. Another 

common occurrence is when many methods with the same 

receiver class are called from within the same method. 

Additionally, we classify the IC OD tuples as either 

monomorphic or polymorphic depending on their structure. 

The monomorphic tuples are the outcome of call sites that 

are resolved in a singular manner by CHA. This means that 

both the caller class and the callee class are singular in 

CHA's estimation. There are three types of polymorphic 

tuples: I those that are polymorphic only in the caller; (ii) 

those that are polymorphic only in the callee; and (iii) those 

that are polymorphic both in the caller and in the callee. 

According to the findings of the class analysis, there are 

three distinct categories of imp: Imp1, Imp2, and Imp3. The 

outcomes of this classification process for the RTA IC OD 

tuples are presented in Table 2. 

 
Table 2: Dynamic tuples category statistic. 

Most of the polymorphic tuples are callee-polymorphic; 

however, caller polymorphic tuples still exist and it is 

important that an analysis for the computation of dynamic 

coupling measures considers both polymorphism in the 

caller and in the callee.  

A. Analysis Precision 

The issue of analysis precision is important for the static 

analysis for the computation of dynamic coupling measures. 

If the analysis is imprecise it may report coupling tuples that 

cannot happen for any execution of the program.We 

examined the IC_OD tuples computed by the two 

instantiations of our analysis and for each tuple we 

attempted to write client code that would exhibit that tuple.  

We were able to prove that all monomorphic tuples in our 

code base are feasible. 

 
Table 3 shows the number of polymorphic tuples: the number for the CHA-
based analysis, the number for the RTA-based 

 

Statistically inferred polymorphic tuples are shown in 
Table 3, along with the actual number of tuples retrieved by 
manual examination. Table 3 demonstrates that the RTA-
based analysis attains an almost perfect level of precision 
since all tuples, with the exception of one, may be exercised 
by a customer. 
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The static analyses that were taken into consideration for 
this research are straightforward and quick to put into action; 
they also have a cost that is essentially proportional to the 
size of the programme. When utilised in practise, these 
studies have the potential to lead to more efficient 
computation of dynamic coupling measurements. In addition, 
the analysis that is based on RTA is capable of virtually 
perfect accuracy, and as a result, it may be able to offer a 
feasible, more convenient, and more practically applicable 
alternative to dynamic analysis for the purpose of computing 
dynamic coupling measures. 

There is a significant amount of work being done on 
coupling measures[7,5,6,12,11,9]. These coupling 
measurements are commonly derived by code analysis; 
however, they do not take polymorphism into account, which 
results in an underestimate of the complexity of the code. 
The foundation of our work is also static analysis; however, 
the metrics that we compute take into account polymorphism 
in a very direct way. 

Polymorphism is taken into account in a group of 
coupling measures that have been established by Eder et al., 
however the calculation of these measures is not taken into 
account. On the other hand, the focus of the work presented 
in this study is on the computation of coupling measures; it 
offers a static analysis approach that captures the 
measurements. It is very clear that the two approaches are 
complementary to one another. 

 

VII. CONCLUSION 

A novel strategy for computing dynamic coupling 
measurements is given. This strategy makes use of static 
code analysis. The following is a list of the primary 
contributions that our work has made. First, a framework for 
static analysis that works on unfinished programmes is 
provided. This framework is intended for the computation of 
dynamic coupling measures for tightly typed object-oriented 
languages such as Java. Second, there is a presentation of 
actual research that demonstrates the accuracy of the analysis 
to be extremely close to flawless. As a result, a practical 

alternative to the more time-consuming and difficult 
dynamic analysis that is often performed for the purpose of 
computing dynamic coupling measures has been offered. 
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