
IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
 Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 10, 2022

2537

Impact analysis in object-oriented systems for

Dynamic Coupling Measures

L. K Suresh Kumar

Associate Professor, Department of Computer Science

UCE, Osmania University, suresh.l@uceou.edu

Abstract— In recent years, researchers have explored the

link between coupling and object-oriented programme quality.

Several studies have shown correlations between class-level

coupling and fault-proneness. Static code analysis quantifies

coupling. Statically analysing code helps monitor security,

reliability, performance, and maintainability. Static code

analysis exposes structural problems and prevents entire

classes of issues when done correctly. Most current work was

done on non-object oriented code, and dynamic code analysis is

more expensive and difficult. This reliance on static analysis

might be troublesome for current software systems, because

dynamic binding existed before OO.

Keywords— class-level coupling and fault-proneness. Static

code analysis ,security, reliability, performance, and

maintainability

I. INTRODUCTION

Coupling, sometimes known as dependence, is a term
used in the field of computer science to refer to the degree to
which one software module is dependent on all of the other
modules. When paired with high cohesiveness, low coupling
helps promote the overall goals of high readability and
maintainability in a computer system. This is because low
coupling is frequently a symptom of a well-structured
computer system and a good design.

The fundamental objective of coupling measurements is
to quantify the degree to which a class is related to other
classes. These metrics are often derived from some type of
static code analysis. For instance, class A is considered to be
linked to class B if one of A's methods invokes one of B's
methods. As a result of the fact that coupling measurements
are used to assist software developers, testers, and
maintainers in reasoning about the complexity of software
and the quality attributes of software, it has significant
applications in the software development and maintenance
fields. There has been a lot of research done on coupling
metrics, and they have been put to use to help maintainers
with a variety of tasks, including impact analysis,
determining the fault-proneness of classes, fault prediction,
ripple effects, and changeability, to name just a few [5, 6, 11,
12, 9]. Therefore, coupling metrics aid developers, testers,
and maintainers in thinking about the programme and in
projecting the demands for code inspection, testing, and
debugging.

II. METHODS FOR MEASURING DYNAMIC COUPLING

The results of dynamic analysis, which are now being
used to gather dynamic coupling measures, indicate that
these measures are superior both as markers of complexity
and as predictors of the quality characteristics they measure.

Only "static" couplings are taken into consideration by
the traditional coupling measurements [5,7]. They may
considerably underestimate the complexity of the software
and misunderstand the necessity for code inspection, testing,
and debugging since they do not account for "dynamic"
couplings that are the result of polymorphism. Take into
consideration the typical bridge construction [8] seen in
figure 1. Traditional coupling measures [5,7] would only
count a single coupling because of a polymorphic call to
imp.DevM() in method A:m, and that coupling would be a
coupling of A to Imp. In point of fact, the actual complexity
of the call is significantly higher because the polymorphic
call can couple "dynamically" each concrete A to each
concrete Imp for a total of six couplings: 'A1,Imp1',
'A1,Imp2', 'A1,Imp3', 'A2,Imp1', 'A2,Imp2', and 'A2,Imp3'.
In addition, the actual complexity of the call is significantly
higher because the poly

Arisholm et al. do in-depth statistical analysis, which
demonstrates that these measures are superior than standard
coupling measures in terms of their ability to indicate the
level of complexity present and to predict the quality of
certain qualities.

III. ANALYSIS OF THE STATIC CLASS

However, dynamic analysis has a number of drawbacks,

including the following:

i) it is relatively slow, (ii) it requires a complete programme,

and (iii) it produces incomplete results as the couplings

output by the dynamic analysis are valid for particular

inputs and executions of the programme.

The utilisation of static analysis as an alternative to dynamic

analysis for the computation of dynamic coupling measures

is the purpose of the entire body of work that has been done.

It's possible that the static analyses discussed in this work

offer numerous benefits that dynamic studies don't have[1]:

I they are applicable in real-world situations, (ii) they are

able to operate on incomplete programmes, and (iii) they

generate outcomes that are consistent across all programme

executions.

A technique known as "programme analysis"

examines a program's source code in order to draw

conclusions about how it will behave when it is executed.

Compiler optimization has historically been accomplished

through the use of programme analysis. An example of this

would be an analysis that looked at the programme,

determined which expressions produced the same result, and

then rewrote the code to get rid of any redundant

computations; in most cases, this results in the programme

running more quickly. In addition, programme analysis may

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
 Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 10, 2022

2538

be used in a broad number of applications within the tools

used to improve the productivity and quality of software.

We present a system for the static analysis of tightly typed

programming languages such as Java, which allows for the

computation of dynamic coupling measures derived from

[3]. This method is successful when used to unfinished

programmes. Because it is necessary to be able to conduct

individual analyses of software components, this is a trait

that is considered to be very significant.

At the lower end of the cost/precision continuum, the

framework with Class Hierarchy Analysis (CHA) and Rapid

Type Analysis (RTA), two well-known class analyses, is

launched. On a number of different aspects, empirical

results are now being offered. An evaluation of precision is

given, which demonstrates that analyses based on RTA

achieve almost perfect precision. This means that it

computes almost exactly the same couplings as would have

been identified dynamically with the most comprehensive

suite of test cases written on top of the component had it

been subjected to the same testing. Based on these findings,

it appears that dynamic coupling measures may be

quantified correctly using a method that is both

straightforward and affordable: static analysis. The

following are some of the contributions made by this work:

For the purpose of computing dynamic coupling measures,

we suggest using a framework for static analysis that is

parameterized by class analysis. Our analysis framework is

built to handle programmes that are only partially complete.

We offer an empirical research that examines the effects of

two different instantiations of the framework on a number of

different Java components.

The Argument in Favor of Using Static Analysis: By

utilising dynamic analysis, Arisholm et al. [3] are able to

capture dynamic coupling measures; nevertheless, they note

that dynamic analysis does have certain limitations. First,

because it needs numerous steps, it is a somewhat lengthy

process. Second, the process of designing and constructing

an instrumentation framework is rather difficult from an

engineering standpoint. Third, in order to do a dynamic

analysis, a whole programme is always necessary. Fourth,

because the results that are acquired are dependent on

certain iterations with specific inputs, it is possible that the

results that are obtained are insufficient.

Fig 1 :Bridge Structure

Figure 1 depicts two different ways to instantiate A1: the

first uses Imp1, while the second uses Imp2. Due to the

execution of the two clients, the dynamic couplings

'A1,Imp1' and 'A1,Imp2' will be counted as being due to the

call imp.DevM. (). As a result, the dynamic analysis won't

take into account those four legitimate couplings. In order to

accurately capture all of the possible dynamic couplings that

are a result of this call, one would require at least six clients

and six runs.

For the aim of computing dynamic coupling measures, static

analysis [14], and in particular class analysis, provides a

potential alternative to dynamic analysis as an option to

consider. [Case in point:] One may get an approximation of

the probable classes of each reference variable and reference

object field by using class analysis, and then use that

information to reason about the possible dynamic couplings.

When it comes to computing dynamic coupling

measurements, static analysis provides a number of

significant benefits over dynamic analysis. To begin, the

dynamic studies that are not included in this article are

likely to be substantially less useful and far more expensive

than the static analyses that are. Second, these analyses are

simple to apply; it is likely that they are used for the sake of

important activities such as the development of call graphs

since they are straightforward to do. Third, the static

analysis that was looked at may be modified to function on

incomplete programmes (also known as software

components). This is an important advantage. In the fourth

place, the static analysis is conservative, which means that

any and all feasible run-time couplings will definitely be

recorded. This is a promise.

Static analysis, on the other hand, has the potential to be

unduly cautious and indicate infeasible couplings. This is

because infeasible couplings are those that cannot take place

during any execution of the programme.

IV. PROBLEM STATEMENT

Our study is geared toward the development of a static
analysis that is capable of accurately computing dynamic
coupling measures, and the analysis must be able to function
on incomplete programmes. The analysis receives as input a
set of interacting Java classes denoted by the notation Cls.
The set of accessible classes is a subset of Cls; these are
classes that may be accessed by unknown client code from
outside of Cls. This subset of Cls is identified as the set of
accessible classes. These types of client code are only able to
access the fields and methods of Cls that have been defined
in some accessible class. The fields and methods that have
been declared in accessible classes are referred to as
boundary fields and boundary methods.

A. Methods for Measuring Dynamic Coupling

The object coupling metrics that capture polymorphic
interactions are the primary focus of this body of work.
When the dynamic analysis comes across an execution of
method m1 with a receiver of type C1 and, during the course
of this execution, call site I in method m1 invokes method
m2 with a receiver of class C2, the measure of highest
granularity, which is denoted by IC OD in [2], records a
tuple that reads "C1,m1,I,C2,m2." Remember the example
from Figure 1 and make the assumption that the number 1 is
in the call site imp.DevM() in method A:m. The dynamic
analysis, assuming that there are tests that assure complete
coverage, would report the following IC OD tuples for call
site 1:

〈A1,A:m,1,Imp1,Imp1:DevM()〉

〈A1,A:m,1,Imp2,Imp2:DevM()〉

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
 Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 10, 2022

2539

〈A1,A:m,1,Imp3,Imp3:DevM()〉

〈A2,A:m,1,Imp1,Imp1:DevM()〉

〈A2,A:m,1,Imp2,Imp2:DevM()〉

〈A2,A:m,1,Imp3,Imp3:DevM()〉.

The measure of intermediate granularity, which is
designated by the symbol IC OM in [3], records tuples with
the call site index I removed from the IC OD tuple. These are
the tuples C1,m1, and C2,m2. The measure with the smallest
amount of granularity, which is designated by the symbol IC
OC in [3], keeps track of tuples with the callee method
removed from the IC OM tuple. It is very clear that IC OD
incorporates IC OM, and IC OM incorporates IC OC.

It is possible to compute a measure for each class by
making use of these tuples. For instance, the IC OD measure
for class C is equal to the number of tuples for which the
caller method m1 is a method declared in C.

B. Discussion

In order to meet the requirements of additional problem
definitions that call for an analysis of incomplete
programmes, we use the following constraint and standard
[10]. Only the executions in which the invocation of a
boundary method stays within Cls, meaning that all of its
transitive callees are likewise located within Cls, are taken
into consideration by us. When we take into account the
prospect of undiscovered subclasses, it is possible that any
instance calls made from Cls will be "redirected" to
undiscovered external code, which might have an impact on
the coupling inference. Therefore, Cls is expanded to
encompass not just the classes that offer functionality for
components but also all additional classes that are referenced
in a transitive manner. In the tests described in Section 5, we
included all classes that were referred to by Cls in a circular
fashion. This strategy confines analytical information to the
"known world" as it exists at the moment; in other words, the
knowledge may become obsolete in the future as a result of
the addition of new subclasses to the Cls.

V. AN ANALYSIS OF THE FRAGMENT CLASSES FOR THE

DYNAMIC COUPLING MEASURES

Class analysis is a process that identifies the object
classes to which a certain reference variable or field may
point. This may be done by looking at the values of the
variable or field.

When arbitrary client code is written on top of Cls, the
knowledge obtained from class analysis is utilised to provide
an approximation of the set of IC OD coupling tuples that
can occur. In order to accomplish this, the class analysis
solution is utilised to generate an approximation of the set of
potential classes for the caller as well as the set of possible
classes for the callee. In this study, we examine the
calculation of dynamic coupling measures based on two
common and straightforward class analyses: Class Hierarchy
Analysis (CHA) [13] and Rapid Type Analysis (RTA) [13].
Both of these analyses are widely known.

The CHA method is the most basic type of class analysis.
The structure of the class hierarchy is investigated by CHA
in order to ascertain the many ways in which polymorphic
variables and fields may be bound. An implementation of

CHA will normally make the assumption that there is an
entire programme, which means that there is a main method
that serves as the beginning of the execution of the
programme; it will begin at main and keep a collection of
methods R that are available from there. Whenever CHA
discovers a method that can be reached, it investigates the
call locations included inside that method. It does this by first
approximating the available run-time classes for r based on
the hierarchy, and then for each C it determines the suitable
run-time target mj based on C and the compile-time target m.
This process is repeated for each call site l = r.m(...). R is
expanded by one for every one of these mj.

RTA is an additional straightforward method of class
analysis. It is an improvement over CHA since it takes into
consideration the classes that are actually instantiated in the
application. The process begins with an exercise known as
Class Hierarchy Analysis, which produces a call graph. It
does this by using information about the classes that have
been created to further minimise the number of executable
virtual functions, which in turn reduces the size of the call
graph.

RTA operates on the assumption that there is a whole
programme and begins execution with the main method as
the first accessible method. RTA will investigate both the
call sites and the instantiation sites inside an accessible
method whenever one of those methods is discovered. In a
nutshell, the RTA solution for a reference variable or a
reference object field is the collection of instantiated classes
that are compatible with the type that was defined for it.

A. Analysis of the Fragment Class

Class analyses are often conceived of as whole-program
analyses. This means that they take a full programme as their
input and generate a class analysis solution that represents
bindings across the entirety of the programme as their output.
Nonetheless, the problem that is going to be looked at in this
work calls for a class analysis of a portion of the programme.
The analysis has to approximate dynamic couplings that may
happen across various executions of any client code built on
top of the classes that make up the input, and the input itself
is a collection of classes called Cls. In order to solve this
issue, we have resorted to a method known as fragment
analysis, which is an overarching strategy. Instead of
working on an entire programme, fragment analysis is
performed on a portion of that programme; in our example,
that portion is the collection of classes known as Cls.

The fragment analysis will first provide a fake main
method that will act as a placeholder for client code that will
be put on top of Cls. Intuitively, the fake main acts as a
simulation of the probable flow of classes between the client
code and Cls. After that, the fragment analysis[32] binds
main to Cls and makes use of some whole-program class
analysis engine to generate class analysis information. This
information summarises the impacts that may be caused by
arbitrary clients.

B. The Calculation of Static and Dynamic Coupling

Measures

Input Methods: the collection of methods that may be
accessed

Statements in Methods Set, or Stmt for short.

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
 Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 10, 2022

2540

Cs: Vars → P(Classes) output Dyn: Cls × Methods × I

× Cls × Methods

i. foreach virtual call si: r.m (...) s.t.r. equals this

ii. if si is included in the static procedure C1:n, then...

iii. add {〈C1, n, I C2, target(C2, m)〉 | C2 ∈ Cs(r) ∧

C1 = C2} to Dyn

iv. otherwise if the si variable is included within the n
instance method (n can be constructor)

v. add {〈C1, n, I C2, target(C2, m) 〉 | C1 ∈

Cs(thisn) ∧ C2 ∈ Cs(r) ∧ C1 = C2 } to Dyn [6]

for each static call, enter C2.m in the si variable (...)

vi. If si is included within the static method C1:n, then
C1 Equals C2.

vii. add 〈C1, n, I C2, m〉 to Dyn

viii. otherwise, if si is included within instance method n
(n can be constructor)

ix. add {〈C1, n, I C2, m〉 | C1 ∈ Cs(thisn) ∧ C1 =

C2 } to Dyn

The technique depicted is responsible for computing
Dyn, which is the collection of tuples C1,n,i,C2,m that
provides an approximation of the various dynamic couplings
that can occur when arbitrary client code is written on top of
Cls. The class analysis variable, Cs, is used to set the
parameters for the algorithm. The accuracy of the
computation of the dynamic measures is directly
proportional to the accuracy of the class analysis that lies
behind it. If the class analysis is more exact, then the set of
couplings will also be more precise. This is because a more
precise class analysis will result in the solution having fewer
classes for each reference variable.

VI. RESULTS

RTA is demonstrably superior to CHA in terms of accuracy.

These results make the distinction between the granularity

levels of the three object coupling measures abundantly

clear; for the majority of components, the IC OD is a

sizeable amount greater than the IC OM, and the IC OM is a

sizeable amount larger than the IC OC. This accurately

depicts the organisation of the code. It is common for the

same virtual call to appear multiple times within the same

method at different call sites. When the call site is dropped

from the tuple, previously distinct tuples are treated as one,

and as a result, there is a drop from IC OD to IC OM. This

is because when the call site is dropped, previously distinct

tuples are treated as one. When the callee is removed from

the tuple, separate tuples are combined into one, which is

what causes the change from IC OM to IC OC. Another

common occurrence is when many methods with the same

receiver class are called from within the same method.

Additionally, we classify the IC OD tuples as either

monomorphic or polymorphic depending on their structure.

The monomorphic tuples are the outcome of call sites that

are resolved in a singular manner by CHA. This means that

both the caller class and the callee class are singular in

CHA's estimation. There are three types of polymorphic

tuples: I those that are polymorphic only in the caller; (ii)

those that are polymorphic only in the callee; and (iii) those

that are polymorphic both in the caller and in the callee.

According to the findings of the class analysis, there are

three distinct categories of imp: Imp1, Imp2, and Imp3. The

outcomes of this classification process for the RTA IC OD

tuples are presented in Table 2.

Table 2: Dynamic tuples category statistic.

Most of the polymorphic tuples are callee-polymorphic;

however, caller polymorphic tuples still exist and it is

important that an analysis for the computation of dynamic

coupling measures considers both polymorphism in the

caller and in the callee.

A. Analysis Precision

The issue of analysis precision is important for the static

analysis for the computation of dynamic coupling measures.

If the analysis is imprecise it may report coupling tuples that

cannot happen for any execution of the program.We

examined the IC_OD tuples computed by the two

instantiations of our analysis and for each tuple we

attempted to write client code that would exhibit that tuple.

We were able to prove that all monomorphic tuples in our

code base are feasible.

Table 3 shows the number of polymorphic tuples: the number for the CHA-
based analysis, the number for the RTA-based

Statistically inferred polymorphic tuples are shown in
Table 3, along with the actual number of tuples retrieved by
manual examination. Table 3 demonstrates that the RTA-
based analysis attains an almost perfect level of precision
since all tuples, with the exception of one, may be exercised
by a customer.

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
 Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 10, 2022

2541

The static analyses that were taken into consideration for
this research are straightforward and quick to put into action;
they also have a cost that is essentially proportional to the
size of the programme. When utilised in practise, these
studies have the potential to lead to more efficient
computation of dynamic coupling measurements. In addition,
the analysis that is based on RTA is capable of virtually
perfect accuracy, and as a result, it may be able to offer a
feasible, more convenient, and more practically applicable
alternative to dynamic analysis for the purpose of computing
dynamic coupling measures.

There is a significant amount of work being done on
coupling measures[7,5,6,12,11,9]. These coupling
measurements are commonly derived by code analysis;
however, they do not take polymorphism into account, which
results in an underestimate of the complexity of the code.
The foundation of our work is also static analysis; however,
the metrics that we compute take into account polymorphism
in a very direct way.

Polymorphism is taken into account in a group of
coupling measures that have been established by Eder et al.,
however the calculation of these measures is not taken into
account. On the other hand, the focus of the work presented
in this study is on the computation of coupling measures; it
offers a static analysis approach that captures the
measurements. It is very clear that the two approaches are
complementary to one another.

VII. CONCLUSION

A novel strategy for computing dynamic coupling
measurements is given. This strategy makes use of static
code analysis. The following is a list of the primary
contributions that our work has made. First, a framework for
static analysis that works on unfinished programmes is
provided. This framework is intended for the computation of
dynamic coupling measures for tightly typed object-oriented
languages such as Java. Second, there is a presentation of
actual research that demonstrates the accuracy of the analysis
to be extremely close to flawless. As a result, a practical

alternative to the more time-consuming and difficult
dynamic analysis that is often performed for the purpose of
computing dynamic coupling measures has been offered.

REFERENCES

[1] for object-oriented software. In IEEE METRICS, pages 33-42, 2002.

[2] E. Arisholm, L. Briand, and A. Foyen. Dynamic coupling
measurement for object-oriented software. IEEE Trans.
SoftwareEngineering, 30(8):491-506, 2004.

[3] E. Arisholm, D. Sjoberg, and M. Jorgensen. Assessing the
chaneability of two object-oriented design alternatives—a controlled
experiment. Emperical Software Engineering, 6(3):231-277, 2001.

[4] M. Berndl, O. Lhotak, F. Qian, L. Hendren, and N. Umanee. Points-
to analysis using BDD’s. In ACM Conference on Programming
Language Design and Implementation, pages 103-114, 2003.

[5] L. C. Briand, P. T. Devanbu, and W. L.Melo. An investigation into
coupling measures for C++. In ACM/IEEE International Conference
on Software Engineering, pages 412-421, 1997.

[6] L. C. Briand, J. Wust, and H. Lounis.Using coupling measurement
for impact analysis in object-oriented systems. In IEEE International
Conference on Software Maintenance, pages 475-482, 1999.

[7] S. Chidamber and C. F. Kemerer. Towards a metrics suite for object
oriented design.In ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 197-
211, 1991.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[9] T. Gyimoty, R. Ferenc, and I. Siket. Emprirical validation of object-
oriented metrics on open source software for fault prediciotn.
IEEE Trans. Software Engineering, 31(10):897-910, 2005.

[10] A. Rountev. Precise identification of side effect free methods. In
IEEE International Conference on Software Maintenance, pages
82-91, 2004.

[11] F. G. Wilkie and B. Kitchenham. Coupling measures and change
ripples in C++ application software. Journal of Systems and
Software, 52(2):157-164, 2000.

[12] P. Yu, T. Systa, and H. A. Muller. Predicting fault-proneness using
oo metrics:An industrial case study. In European Conference on
Software Maintenance and Reengineering, pages 99-107, 2002.

[13] Atanas Rountev , Ana Milanova and Barbara G. Ryder.Fragment
Class Analysis for Testing of Polymorphism in Java Software,pages
3-11

