Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

Investigating Pre A* Algebras as an Emerging Paradigm

T. Nageswara Rao1, a),

1) Department of Engineering Mathematics, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India.

tnraothota@kluniversity.in

J onnalagadda VenkateswaraRao 2,b)

 Department of Mathematics, School of Science & Technology, United States International University, USIU-Africa, P.O. Box 14634 - 00800 Nairobi, Kenya. jvrao@usiu.ac.ke

ABSTRACT:

This paper explores Boolean algebra postulate systems, aiming to derive a minimal set of axioms. It delves into the algebraic structure of Pre A*-algebras and establishes the congruence relation on them. Defining a ternary operation as a conditional statement, the paper explores its properties. Pre A* algebras are obtained from Boolean Algebra B, and it is proven that if A is a Pre A*-algebra and x is in A, then Ax is a Pre A*-algebra, isomorphic to a quotient algebra of A.

AMS Subject Classification (2000): 06E05, 06E25, 06E99, 06B10

KEY WORDS: Pre A*-Algebra, Stone type representation, Boolean algebra.

§ 0. INTRODUCTION:

In a drafted paper [6], The Equational theory of Disjoint Alternatives, around 1989, E.G.Maines introduced the concept of Ada, $(A, \land, \lor, (-)', (-)_{\pi}, 0, 1, 2)$ which however differs from the definition of the Ada [7]. While the Ada of the earlier draft seems to be based on extending the If-Then-Else concept more on the basis of Boolean algebras, the latter concept is based on C-algebras $(A, \land, \lor, (-)^{\circ})$ introduced by Fernando Guzman and Craig C. Squir [3].

In 1994, P.Koteswara Rao [5] firstly introduced the concept of A*-algebra $(A, A, V, A, (-)^{-}(-)_{\pi}, 0, 1, 2)$ and studied the equivalence with Ada [6], C-algebra [3], and Ada [7] and its connection with 3-

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

ring, Stone type representation and introduced the concept of A*-clone and the If-Then-Else structure over A*-algebra and ideal of A*-algebra.

In 2000, J.Venkateswara Rao [8] introduced the concept Pre A*-algebra $(A, \land, \lor, (-)^{\sim})$ analogous to C-algebra as a reduct of A*- algebra.

§ 1. BOOLEAN ALGEBRA:

1.1. Definition: A Boolean algebra is algebra $(B, \land, \lor, (-)', 0, 1)$ with two binary operations, one unary operation (called complementation), and two nullary operations which satisfies:

(1) (B, \wedge, \vee) is a distributive lattice.

(2) $x \land 0 = 0$, $x \lor 1 = 1$ for all $x \in B$.

(3) $x \wedge x' = 0$, $x \vee x' = 1$ for all $x \in B$.

We can easily verify that x'' = x, $(x \lor y)' = x' \land y'$, $(x \land y)' = x' \lor y'$ for all $x, y \in B$.

1.2.Note:Alternative systems of postulates of Boolean Algebras were intensively studied during the decades 1900-1940. E.V.Huntingtion wrote an influential early paper [4] on this subject. No attempt will be made here to survey the extensive literature on such postulate systems. We present here Huntington's postulates and a new set of postulates of our own for Boolean algebra.

1.3. Huntington's Theorem [1]: Let B has one binary operation \vee and one unary operation

(-) and define

(i) $a \wedge b = (a' \vee b')', \forall a, b \in B$.

Suppose for all a, b, $c \in B$,

(ii) $a \lor b = b \lor a$, (iii) $a \lor (b \lor c) = (a \lor b) \lor c$ and

(iv) $(a \wedge b) \vee (a \wedge b') = a$. Then B is a Boolean algebra.

1.4. Theorem [8]: Let B has one binary operation \land and one unary operation (-)' and define

(i) $a \lor b = (a' \land b')', \forall a, b \in B$.

Suppose for all a, b, $c \in B$,

(ii) $a \lor b = b \lor a$, (iii) $a \lor (b \lor c) = (a \lor b) \lor c$ and

(iv) $(a \land b) \lor (a \land b') = a$. Then B is a Boolean algebra.

§ 2.Pre A* Algebra:

2.1. Definition:

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

An algebra $(A, \land, \lor, (-))$ satisfying

(a) $x^{\sim} = x$, $\forall x \in A$, (b) $x \land x = x$, $\forall x \in A$,

(c) $x \wedge y = y \wedge x$, $\forall x, y \in A$,

(d) $(x \land y)^{\sim} = x^{\sim} \lor y^{\sim}, \forall x, y \in A,$

(e) $\mathbf{x} \wedge (\mathbf{y} \wedge \mathbf{z}) = (\mathbf{x} \wedge \mathbf{y}) \wedge \mathbf{z}$; $\forall x, y, z \in A$,

(f)
$$\mathbf{x} \wedge (\mathbf{y} \vee \mathbf{z}) = (\mathbf{x} \wedge \mathbf{y}) \vee (\mathbf{x} \wedge \mathbf{z}); \ \forall x, y, z \in A,$$

(g)
$$x \wedge y = x \wedge (\tilde{x} \vee y)$$
 for all $x, y, z \in A$,

is called a Pre A*-algebra

2.2. Eample:

Research paper

 $\mathbf{3} = \{0, 1, 2\}$ with \land , \lor , $(-)^{\sim}$ defined below is a Pre A*-algebra.

\wedge	0	1	2	\vee	0	1	2		х	x~
0	0	0	2	0	0	1	2	-	0	1
1	0	1	2	1	1	1	2		1	0
2	0 2	2	2	2	1 2	2	2		2	2

2.3. Note: The elements 0, 1, 2 in the above example satisfy the following laws:

(a)
$$2^{\sim} = 2$$
 (b) $1 \wedge x = x$ for all $x \in \mathbf{3}$

(c) $0 \lor x = x$ for all $x \in \mathbf{3}$ (d) $2 \land x = 2 \lor x = 2$ for all $x \in \mathbf{3}$.

2.4. Example: $2 = \{0, 1\}$ with $\land, \lor, (-)^{\sim}$ defined below is a Pre A*-algebra.

\wedge	0	1	\vee	0	1			x~
0	0	0	0	0	1	_		1
1	0	1	1	1	1		1	0

2.5. Note: Actually $(2, \vee, \wedge, (-\tilde{j}))$ is a Boolean algebra. So every Boolean algebra is a Pre A* algebra.

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019 Research paper

2.6. Definition: Let A be a Pre A*-algebra. An element $x \in A$ is called central element of A if

 $x \lor x = 1$ and the set

{ $x \in A / x \vee x = 1$ } of all central elements of A is called the centre of A and it is denoted by

B(A). The set B(A) is a Boolean algebra with $_{\vee,\wedge,(-)}$.

2.7. Lemma: Every Pre A*-algebra satisfies the following laws.

- (a) $x \lor (x \land x) = x$ (b) $(x \lor x) \land y = (x \land y) \lor (x \land y)$
- (c) $(x \lor x) \land x = x$ (d) $x \land x \land y = x \land x^{\sim}$

Proof: (a)

We have $x \wedge y = x \wedge (\tilde{x} \vee y)$ (By 2.1 (g))

$$\Rightarrow x \land x = x \land (x \lor x)$$

$$\Rightarrow (x \land x)^{\sim} = (x \land (x \lor x))^{\sim}$$

$$\Rightarrow x^{\sim} = x^{\sim} \lor (x^{\sim} \lor x)^{\sim} \quad (By \ 2.1 \ (b))$$

$$\Rightarrow x^{\sim} = x^{\sim} \lor (x \land x^{\sim})$$

$$\Rightarrow x = x \lor (x^{\sim} \land x)$$

- (b) Use 2.1(f) and 2.1(c)
- (c) $(x \lor x^{\sim}) \land x = (x \land x) \lor (x^{\sim} \land x)$ (By 2.7 (b))

$$= x \lor (x^{\sim} \land x)$$
 (By 2.1 (b))
= x (By 2.7 (a))

(d) Can be verified routinely.

2.8. Lemma: Let A be a Pre A*algebra with 1, 0 and let

```
x, y \in A
(a) If x \lor y = 0, then x = 0
(b) If x \lor y = 1, then x \lor x = 1
Proof: (a) x = x \lor 0
                                            (x \lor y = 0)
         = x \lor x \lor y
         = x \lor y = 0
                                                (2.1b)~
(b) 1 = x \lor y
         = x \lor (x \land y)
                                             (2.1g)~
          = (x \lor x) \land (x \lor y) = (x \lor x) \land 1 = (x \lor x)
```

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

2.9. Definition: A relation θ on a Pre $-A^*$ algebra $(A, \land, \lor, (-)^{\sim})$ is called congruence relation if

(i) θ is an equivalence relation

Research paper

(ii) θ is closed under \land , \lor , (-)[~].

2.10. Lemma: Let $(A, \land, \lor, (-))$ be a Pre A*-algebra and let $a \in A$. Then the relation

 $\theta_a = \{(x, y) \in A \times A / a \land x = a \land y\}$ is

(i) a congruence relation (ii) $\theta_a \cap \theta_{a'} = \theta_{a \lor a'}$

we will write $x \theta_a y$ to indicate $(x, y) \in \theta_a$

2.11. Definition: Let A be a Pre -A* algebra. If

x, p, q $\in A$, define the ternary operation $\Gamma_x(p,q) = (x \wedge p) \vee (x \wedge q) (\Gamma_x(p,q) \text{ should be viewed as conditional " if x, then p, else q").$

2.12. Lemma: Every Pre-A* algebra with the indicated constants satisfies the following laws.

(i) $\Gamma_2(p,q) = 2$ (ii) $\Gamma_x(2,2) = 2$

(iii) $\Gamma_1(p,q) = p$ (iv) $\Gamma_0(p,q) = q$ (v) $\Gamma_x(1,0) = x$

Proof: By inspection.

Definition: Let A be a Pre A*- algebra and $x \in A$. Define $\psi_x = \{(p,q) \in A \times A / \Gamma_x(p,q) = p\}$

Lemma: Let A be a Pre A*-algebra and $x \in A$. Then

(i) $\psi_x \subseteq \theta_{x'}$

(ii) ψ_x is transitive but it is neither reflexive nor symmetric.

Theorem: Let A be a Pre A* algebra with 1 and $x \in B(A)$ then

(i) $\psi_x = \theta_{x'}$ (ii) ψ_x is congruence relation on A

2.13. Lemma: Every Pre-A* algebra satisfies the laws:

(i)
$$\Gamma_x(p,q) = \Gamma_x(p,q)$$

(ii)
$$\Gamma_x(p,q) \wedge \mathbf{r} = \Gamma_x(p \wedge \mathbf{r}, q \wedge \mathbf{r})$$

(iii) $\Gamma_x(p,q) \lor \mathbf{r} = \Gamma_x(p \lor \mathbf{r}, q \lor \mathbf{r})$

(iv) $\Gamma_x(\Gamma_y(p,q),\Gamma_y(r,s)) = \Gamma_y(\Gamma_x(p,r),\Gamma_x(q,s))$

2.14. Definition: Let $(A_1, \lor, \land, (-)^{\sim})$ and $(A_2, \lor, \land, (-)^{\sim})$ be a two Pre A*- algebras. A mapping

 $f: A_1 \rightarrow A_2$ is called an Pre A*-homomorphism if

(i) $f(a \wedge b) = f(a) \wedge f(b)$ (ii) $f(a \vee b) = f(a) \vee f(b)$ (iii) $f(a^{\sim}) = (\mathfrak{f}(a))^{\sim}$.

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

If in addition, f is bijective, then f is called an Pre A*-isomorphism, and A_1, A_2 are said to be isomorphic, denoted in symbols $A_1 \cong A_2$.

2.15. Lemma: Let A be a Pre A*-algebra with 1, 0. Suppose that for every $x \in A - \{0, 1\}$, $x \lor x^{\sim} \neq 1$. Define f : A $\rightarrow \{0, 1, 2\}$ by f(1) = 1, f(0) = 0 and f(x) = 2 if $x \neq 0, 1$. Then f is a Pre A*-algebra homomorphism.

§ 3 Generating Pre A* algebras:

Research paper

In this section we generated Pre A*- algebras $A(B) = \{(a_1, a_2) / a_1, a_2 \in B \text{ and } a_1 \land a_2 = 0\}$ and $A_B = B \times B / \approx = \{(a,b) / (a,b) \in B \times B\}$ from Boolean algebra where $(a,b) = \{(c,d) \in B \times B / (a,b) \approx (c,d)\}$, the equivalence class containing (a,b), \approx defined on $B \times B$ as $(a,b) \approx (c,d)$ if and only if a = c and a'b = c'd and also we proved that $A_B \cong A(B)$. First we prove the following

3.1. Theorem: Let $(B, \land, \lor, (-)', 0, 1)$ be a Boolean Algebra. Then $A(B) = \{(a_1, a_2) / a_1, a_2 \in B \text{ and } a_1 \land a_2 = 0\}$ becomes a Pre A* algebra with 1 = (1, 0), 0 = (0, 1), 2 = (0, 0) and $\forall a, b \in A(B)$,

(i) $a \wedge b = (a_1b_1, a_1b_2 + a_2b_1 + a_2b_2)$ where juxta position , +, (-)' respectively \wedge , \vee , (-)' in Boolean algebra B (ii) $a \vee b = (a_1b_1 + a_1b_2 + a_2b_1, a_2b_2)$ and (iii) $a^{\sim} = (a_2, a_1)$

3.2. Theorem: Suppose $_{(B,\vee,\wedge,(-)',0,1)}$ is Boolean algebra. Define \approx on $B \times B$ as $(a,b) \approx (c,d)$ if and only if a = c and a'b = c'd. Then

(i) \approx is an equivalence relation on $B \times B$; $\langle a,b \rangle = \{(c,d) \in B \times B / (a,b) \approx (c,d)\}$, the equivalence class containing (a,b).Let $A_B = B \times B / \approx = \{\langle a,b \rangle / (a,b) \in B \times B\}$.

(ii)For every $\langle a,b \rangle \in A_B$ there exists $e, f \in B$

and ef=0 such that $(e,f) \in \langle a,b \rangle$ and (e,f) is unique.

(iii) Define, $\lor, \land, (-)^{\sim}$ on A_{B} as follows:

Assume that $A_B = \{ \langle a, b \rangle / a, b \in B, ab = 0 \}$.

(a) $\langle a,b \rangle \land \langle c,d \rangle = \langle ac,ad+bc+bd \rangle$ where juxta position, +, respectively \land,\lor in Boolean algebra B.

(b)
$$\langle a,b \rangle \lor \langle c,d \rangle = \langle ac+ad+bc,bd \rangle$$

(c) $\langle a,b \rangle^{\sim} = \langle b,a \rangle$. Then $(A_B, \lor, \land, (-)^{\sim})$ is a pre A* algebra.

(Note that in Pre A*-algebra $(A_B, \lor, \land, (-))$, 1=<1,0>, 0=<0,1>, 2=<0,0>).

4. The Pre A*-algebra A_x :

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

Recall that for every Boolean algebra B and $a \in B$ the set(a] ={ $x \in B / x \le a$ } ([a) ={ $x \in B / x \le a$ }) is a Boolean algebra under the induced operations \land,\lor where the complementation is defined by $x^* = a \land x'$ ($x = a \lor x'$)

In this section we prove that if A is a pre A*-algebra and $x \in A$, then $A_x = \{s \in A / s \le x\}$ is a Pre A*algebra under the induced operations and A_x is isomorphic to a quotient algebra of A.

4.1 Theorem: Let A be a Pre A* algebra, $x \in A$, and $A_x = \{s \in A / s \le x\}$. Then $\langle A, \wedge, \vee, * \rangle$ is Pre A* algebra with 1 where \wedge, \vee are the operations in A restricted to A_x , s* is defined by $x \wedge s^{\sim}$, the relation defined on Pre A* algebra A by $s \le x$ if $s \wedge x = x \wedge s = x$

Proof: If $s \in A_x$, then

Research paper

 $x \wedge s^* = x \wedge (x \wedge s^{\sim}) = (x \wedge x) \wedge s^{\sim} = x \wedge s^{\sim} = S^*.$

So that $s^* \in A_x$ and

$$S^{**} = (S^{*})^{*} = (x \land s^{*})^{*} = (x \land s^{*})^{*} = x \land (x \land s^{*})^{*}$$

$$\equiv x \land (x \lor s) \equiv x \land s = s$$

Now, for $s, t \in A_x$, $(s \wedge t)^* = x \wedge (s \wedge t)^* = x \wedge (s^* \vee t^*)$

$$=(x \wedge s^{\sim}) \vee (x \wedge t^{\sim}) = S^* V t^*$$

For $s, t \in A_x$

$$s \wedge (s^* \vee t) = s \wedge ((x \wedge s^{\sim}) \vee t) = s \wedge (x \wedge s^{\sim}) \vee (s \wedge t)$$
$$= s \wedge (s^{\sim} \wedge x) \vee (s \wedge t) = (s \wedge s^{\sim}) \vee (s \wedge t)$$
$$= s \wedge (s^{\sim} \vee t) = s \wedge t \quad (\text{since } s, t \in A_r)$$

The remaining properties hold in A_x since they hold in A. Hence $\langle A, \wedge, \vee, * \rangle$ is a Pre A* algebra . Observe that A_x is not a sub-algebra of A because the operation * is not the restriction *of* \sim to A_x .

4.2 Theorem: Let A be a Pre A*- algebra. Then the following hold:

(i) $A_x = \{x \land s / s \in A\}$ (ii) $A_x = A_y$ if and only if x = y (iii) $A_x \cap A_y \subseteq A_{x \land y}$ (iv) $A_x \cap A_{x'} = A_{x \land x'}$ (v) $(A_x)_{x \land y} = A_{x \land y}$ **Proof:**

(i), (ii) and (iii) can be proved routinely.

Research paper© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -1) Journal Volume 8, Issue 2, 2019For (iv) , Let $s \in A_{x \land x'}$, then $(x \land x') \land s = s$ Now $x \land s = x \land (x \land x' \land s) = x \land x' \land s = s$ Again $x' \land s = x' \land (x \land x' \land s) = x \land x' \land s = s$ For (v) , $(A_x)_{x \land y} = \{x \land y \land t/t \in A_x\}$ $= \{x \land y \land x \land s/s \in A\}$ $= \{x \land y \land s/s \in A\} = A_{x \land y}$ **4.3 Lemma:** Let $f: A_1 \rightarrow A_2$ be Pre A* - algebra homomorphism where A_1 , A_2 are Pre A*

4.5 Lemma: Let $f: A_1 \to A_2$ be Pre A⁺ - argeora nonnonprinsm where A_1 , A_2 are Pre A⁺ algebras with 1_1 and 1_2 . Then (i) If A_1 has the element 2, then f(2) is the element of A_2 (ii) If $a \in B(A_1)$, then $f(a) \in B(A_2)$

4.4 Theorem: Let A be a Pre A*-algebra with 1 and $x \in A$, then the mapping $\alpha_x : A \to A_x$ defined by $\alpha_x(s) = x \land s$ for all $s \in A$ is a homomorphism of A onto A_x with kernel θ_x and hence $A/\theta_x \cong A_x$

Proof: For $s \in A$, $x \land s \le x$ and hence $x \land s \in A_x$.

Let s, $t \in A$, then

 $\alpha_x(x \wedge s) = x \wedge s \wedge t \equiv x \wedge s \wedge x \wedge t = \alpha_x(s) \wedge \alpha_x(s)$

$$\alpha_x(s) = x \wedge s = x \wedge (x \vee s) = x \wedge (x \wedge s)$$

$$= (x \wedge s)^* = (\alpha_x(s))^*$$

We can prove that $\alpha_x(s \lor t) = \alpha_x(s) \lor \alpha_x(t)$. Hence α_x is a Pre A* homomorphism. Now $s \in A_x$, we have $\alpha_x(s) = s$. Therefore α_x is onto homomorphism. Hence by the fundamental theorem of homomorphism $A / ker \alpha_x \cong A_x$ and Ker $\alpha_x = \{(s,t) \in A \times A / \alpha_x(s) = \alpha_x(t)\}$

 $= \{(s,t) \in A \times A / x \land s = x \land t\} = \theta_x \text{ Thus } A / \theta_x \cong A_x$

References:

1. **Birkhoff.G**, Lattice theory, American Mathematical Society, Colloquium publishers, New York, 1948.

2.Chandrasekhara Rao.K, Venkateswara Rao.J and Koteswara Rao.P, Pre A* - Algebras, Journal of Institute of Mathematics & Computer Sciences, Math.Ser.Vol.20,No.3(2007)157-164.

3. Fernando Guzman and Craig C. Squir, The algebra of conditional logic, Algebra

Universalis,27(1990) 88 - 110.

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

4. Huntington E.V, Trans. AMS 35(1933) 274-304.

5. Koteswara Rao.P, A*- algebras and if-then- else structures (Ph.D., thesis), Acharya

Nagarjuna University, A.P., India, 1994

6. **Manes E.G.,** The Equational Theory of Disjoint Alternatives, Personal communication to Prof. N.V.Subrahmanyam (1989).

7. Manes E.G., Adas and the Equational Theory of If-then –else, Algebra Universalis 30(1993), 373-394

8. Venkateswara Rao.J, On A*-algebras (Doctoral Thesis), Acharya Nagarjuna University,

A.P., India 2000.