ISSN PRINT 23191775 Online 23207876

Investigating Pre A* Algebras as an Emerging Paradigm

T. Nageswara Rao1, a),
1) Department of Engineering Mathematics, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India.
tnraothota@kluniversity.in
J onnalagadda VenkateswaraRao 2,b)
2) Department of Mathematics, School of Science \& Technology, United States International University, USIU-Africa, P.O. Box 14634-00800 Nairobi, Kenya. jvrao@usiu.ac.ke

Abstract

: This paper explores Boolean algebra postulate systems, aiming to derive a minimal set of axioms. It delves into the algebraic structure of Pre A^{*}-algebras and establishes the congruence relation on them. Defining a ternary operation as a conditional statement, the paper explores its properties. Pre A^{*} algebras are obtained from Boolean Algebra B, and it is proven that if A is a Pre A*-algebra and x is in A, then $A x$ is a Pre A*-algebra, isomorphic to a quotient algebra of A.

AMS Subject Classification (2000): 06E05, 06E25, 06E99, 06B10

KEY WORDS: Pre A*-Algebra, Stone type representation, Boolean algebra.

§ 0. INTRODUCTION:

In a drafted paper [6], The Equational theory of Disjoint Alternatives, around 1989, E.G.Maines introduced the concept of Ada, $\left(A, \wedge, v,(-)^{\prime},(-)_{\pi}, 0,1,2\right)$ which however differs from the definition of the Ada [7]. While the Ada of the earlier draft seems to be based on extending the If-Then-Else concept more on the basis of Boolean algebras, the latter concept is based on Calgebras (A,৯,v,(-)) introduced by Fernando Guzman and Craig C. Squir [3].

In 1994, P.Koteswara Rao [5] firstly introduced the concept of A*-algebra $\left(A, A, \vee, *,(-)(-)_{\pi}, 0,1,2\right)$ and studied the equivalence with Ada [6], C-algebra [3], and Ada [7] and its connection with 3-

ISSN PRINT 23191775 Online 23207876

ring, Stone type representation and introduced the concept of A^{*}-clone and the If-Then-Else structure over A*-algebra and ideal of A*-algebra.

In 2000, J.Venkateswara Rao [8] introduced the concept Pre A*-algebra ($\left.A, \wedge, \vee,(-)^{\sim}\right)$ analogous to C -algebra as a reduct of A^{*} - algebra.

§ 1. BOOLEAN ALGEBRA:

1.1. Definition: A Boolean algebra is algebra $\left(B, \wedge, \vee,(-)^{\prime}, 0,1\right)$ with two binary operations, one unary operation (called complementation), and two nullary operations which satisfies:
(1) (B, \wedge, \vee) is a distributive lattice.
(2) $x \wedge 0=0, \quad x \vee 1=1$ for all $x \in B$.
(3) $x \wedge x^{\prime}=0, \mathrm{x} \vee \mathrm{x}^{\prime}=1$ for all $\mathrm{x} \in \mathrm{B}$.

We can easily verify that $x^{\prime \prime}=x,(x \vee y)^{\prime}=x^{\prime} \wedge y^{\prime},(\mathrm{x} \wedge \mathrm{y})^{\prime}=\mathrm{x}^{\prime} \vee \mathrm{y}^{\prime}$ for all $x, y \in B$.
1.2.Note:Alternative systems of postulates of Boolean Algebras were intensively studied during the decades 1900-1940. E.V.Huntingtion wrote an influential early paper [4] on this subject. No attempt will be made here to survey the extensive literature on such postulate systems. We present here Huntington's postulates and a new set of postulates of our own for Boolean algebra.
1.3. Huntington's Theorem [1]: Let B has one binary operation \vee and one unary operation
(-) and define
(i) $a \wedge b=\left(a^{\prime} \vee b^{\prime}\right)^{\prime}, \forall a, b \in B$.

Suppose for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{B}$,
(ii) $a \vee b=b \vee a$,
(iii) $a \vee(b \vee c)=(a \vee b) \vee c$ and
(iv) $(a \wedge b) \vee\left(a \wedge b^{\prime}\right)=a$. Then B is a Boolean algebra.
1.4. Theorem [8]: Let B has one binary operation \wedge and one unary operation $(-)^{\prime}$ and define
(i) $a \vee b=\left(a^{\prime} \wedge b^{\prime}\right)^{\prime}, \quad \forall a, b \in B$.

Suppose for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{B}$,
(ii) $a \vee b=b \vee a$,
(iii) $a \vee(b \vee c)=(a \vee b) \vee c$ and
(iv) $(a \wedge b) \vee\left(a \wedge b^{\prime}\right)=a$. Then B is a Boolean algebra.

§ 2.Pre A* Algebra:

2.1. Definition:

An algebra $\left(\mathrm{A}, \wedge, \vee,(-)^{\sim}\right)$ satisfying
(a) $\mathrm{x}^{\sim}=\mathrm{x}, \forall \mathrm{x} \in \mathrm{A}, \quad$ (b) $\mathrm{x} \wedge \mathrm{x}=\mathrm{x}, \forall \mathrm{x} \in \mathrm{A}$,
(c) $\mathrm{x} \wedge \mathrm{y}=\mathrm{y} \wedge \mathrm{x}, \quad \forall \mathrm{x}, \mathrm{y} \in \mathrm{A}$,
(d) $(\mathrm{x} \wedge \mathrm{y})^{\sim}=\mathrm{x}^{\sim} \vee \mathrm{y}^{\sim}, \forall \mathrm{x}, \mathrm{y} \in \mathrm{A}$,
(e) $\mathrm{x} \wedge(\mathrm{y} \wedge \mathrm{z})=(\mathrm{x} \wedge \mathrm{y}) \wedge \mathrm{z} ; \quad \forall x, y, z \in A$,
(f) $\mathrm{x} \wedge(\mathrm{y} \vee \mathrm{z})=(\mathrm{x} \wedge \mathrm{y}) \vee(\mathrm{x} \wedge \mathrm{z}) ; \forall x, y, z \in A$,
$(g) x \wedge y=x \wedge\left(x^{\sim} \vee y\right)$ for all $x, y, z \in A$,
is called a Pre A^{*}-algebra

2.2. Eample:

$\mathbf{3}=\{0,1,2\}$ with $\wedge, \vee,(-)^{\sim}$ defined below is a Pre A^{*}-algebra.

\wedge	0	1	2	\checkmark	0	1	2	x	x
0	0	0	2	0	0	1	2	0	1
1	0	1	2	1	1	1	2	1	0
2	2	2	2	2	2	2	2	2	2

2.3. Note:The elements $0,1,2$ in the above example satisfy the following laws:
(a) $2^{\sim}=2$
(b) $1 \wedge x=x$ for all $x \in 3$
(c) $0 \vee x=x$ for all $x \in \mathbf{3}$
(d) $2 \wedge x=2 \vee x=2$ for all $x \in 3$.
2.4. Example: $\mathbf{2}=\{0,1\}$ with $\wedge, \vee,(-)^{\sim}$ defined below is a Pre A^{*}-algebra.

\wedge	0	1	\checkmark	0	1	x	x^{\sim}
0	0	0	0	0	1	0	1
1	0	1	1	1	1	1	0

2.5. Note: Actually $(2, \vee, \wedge,(-))$ is a Boolean algebra. So every Boolean algebra is a Pre A^{*} algebra.
2.6. Definition: Let A be a Pre A^{*}-algebra. An element $x \in A$ is called central element of A if $x \vee x=1$ and the set
$\left\{\mathrm{x} \in \mathrm{A} / x \vee x^{\sim}=1\right\}$ of all central elements of A is called the centre of A and it is denoted by $\mathrm{B}(\mathrm{A})$.The set $\mathrm{B}(\mathrm{A})$ is a Boolean algebra with $\mathrm{v}, \wedge,(-\tilde{)}$.
2.7. Lemma: Every Pre A^{*}-algebra satisfies the following laws.
(a) $x \vee(\tilde{x} \wedge \mathrm{x})=\mathrm{x}$
(b) $(x \vee \tilde{x}) \wedge \mathrm{y}=(\mathrm{x} \wedge \mathrm{y}) \vee\left(\mathrm{x}^{\sim} \wedge \mathrm{y}\right)$
(c) $\left(x \vee \tilde{x}^{2}\right) \wedge \mathrm{x}=\mathrm{x}$
(d) $x \wedge \tilde{x} \wedge \mathrm{y}=\mathrm{x} \wedge \mathrm{x}^{\sim}$

Proof: (a)
We have $\mathrm{x} \wedge \mathrm{y}=\mathrm{x} \wedge\left(\mathrm{x}^{\sim} \vee \mathrm{y}\right) \quad($ By $2.1(\mathrm{~g}))$

$$
\begin{aligned}
& \Rightarrow x \wedge x=\mathrm{x} \wedge\left(\tilde{\left.\mathrm{x}^{\sim} \vee \mathrm{x}\right)}\right. \\
& \Rightarrow(x \wedge x)^{\sim}=(\mathrm{x} \wedge(\tilde{\mathrm{x}} \vee \mathrm{x}))^{\sim} \\
& \Rightarrow \tilde{x^{\sim}=\mathrm{x}^{\sim} \vee\left(\mathrm{x}^{\sim} \vee \mathrm{x}\right)^{\sim} \quad(\mathrm{By} 2.1 \text { (b) })} \\
& \Rightarrow \tilde{x}=\mathrm{x}^{\sim} \vee\left(\mathrm{x} \wedge \mathrm{x}^{\sim}\right) \\
& \Rightarrow x=x \vee(\tilde{x} \wedge \mathrm{x})
\end{aligned}
$$

(b) Use 2.1(f) and 2.1(c)
(c) $(x \vee \tilde{x}) \wedge x=(x \wedge x) \vee(\tilde{x} \wedge x)($ By 2.7 (b))

$$
\begin{array}{ll}
=x \vee\left(\tilde{\left.x^{\sim} \wedge \mathrm{x}\right)}\right. & (\text { By } 2.1(\mathrm{~b})) \\
=\mathrm{x} & (\text { By } 2.7(\mathrm{a}))
\end{array}
$$

(d) Can be verified routinely.
2.8. Lemma: Let A be a Pre A*algebra with 1,0 and let
$x, y \in A$
(a) If $x \vee y=0$, then $\mathrm{x}=0$
(b) If $x \vee y=1$, then $x \vee \tilde{x}=1$

Proof: (a) $\quad x=x \vee 0$

$$
\begin{array}{ll}
=x \vee x \vee y & (x \vee y=0) \\
=x \vee y=0 & (2.1 b)^{\sim}
\end{array}
$$

(b) $1=x \vee y$

$$
\begin{aligned}
& =x \vee(\tilde{x} \wedge \mathrm{y}) \quad(2.1 g)^{\sim} \\
& =(x \vee \tilde{\sim}) \wedge(\mathrm{x} \vee \mathrm{y})=\left(x \vee \tilde{x^{2}}\right) \wedge 1=\left(x \vee \tilde{x^{2}}\right)
\end{aligned}
$$

ISSN PRINT 23191775 Online 23207876
2.9. Definition: A relation θ on a Pre $-\mathrm{A}^{*}$ algebra $\left(\mathrm{A}, \wedge, \vee,(-)^{\sim}\right)$ is called congruence relation if
(i) θ is an equivalence relation
(ii) θ is closed under $\wedge, \vee,(-)^{\sim}$.
2.10. Lemma: Let $\left(\mathrm{A}, \wedge, \vee,(-)^{\sim}\right)$ be a Pre A^{*}-algebra and let $a \in A$. Then the relation $\theta_{a}=\{(x, y) \in A \times A / a \wedge x=a \wedge y\}$ is
(i) a congruence relation (ii) $\theta_{a} \cap \theta_{a^{\prime}}=\theta_{a \vee a^{\prime}}$
we will write $x \theta_{a} y$ to indicate $(x, y) \in \theta_{a}$
2.11. Definition: Let A be a Pre -A* algebra. If
$\mathrm{x}, \mathrm{p}, \mathrm{q} \in A$, define the ternary operation $\Gamma_{x}(p, q)=(x \wedge p) \vee\left(x^{\sim} \wedge \mathrm{q}\right)\left(\Gamma_{x}(p, q)\right.$ should be viewed as conditional " if x, then p, else q").
2.12. Lemma: Every Pre-A* algebra with the indicated constants satisfies the following laws.
(i) $\Gamma_{2}(p, q)=2$ (ii) $\Gamma_{x}(2,2)=2$
(iii) $\Gamma_{1}(p, q)=p$ (iv) $\Gamma_{0}(p, q)=q$ (v) $\Gamma_{x}(1,0)=x$

Proof: By inspection.
Definition: Let A be a Pre A*- algebra and $x \in A$.Define $\psi_{x}=\left\{(p, q) \in A \times A / \Gamma_{x}(p, q)=p\right\}$
Lemma: Let A be a Pre A*-algebra and $x \in A$. Then
(i) $\psi_{x} \subseteq \theta_{x^{\prime}}$
(ii) ψ_{x} is transitive but it is neither reflexive nor symmetric.

Theorem: Let A be a Pre A* algebra with 1 and $\mathrm{x} \in \mathrm{B}(\mathrm{A})$ then
(i) $\psi_{x}=\theta_{x^{\prime}}$
(ii) ψ_{x} is congruence relation on A
2.13. Lemma: Every Pre-A* algebra satisfies the laws:
(i) $\Gamma_{x}(p, q)^{\sim}=\Gamma_{\mathrm{x}}\left(p^{\sim}, q^{\sim}\right)$
(ii) $\Gamma_{x}(p, q) \wedge \mathrm{r}=\Gamma_{\mathrm{x}}(p \wedge \mathrm{r}, \mathrm{q} \wedge \mathrm{r})$
(iii) $\Gamma_{x}(p, q) \vee \mathrm{r}=\Gamma_{\mathrm{x}}(p \vee \mathrm{r}, \mathrm{q} \vee \mathrm{r})$
(iv) $\Gamma_{x}\left(\Gamma_{y}(p, q), \Gamma_{y}(r, s)\right)=\Gamma_{y}\left(\Gamma_{x}(p, r), \Gamma_{x}(q, s)\right)$
2.14. Definition: Let $\left(A_{1}, \vee, \wedge,(-)^{\sim}\right)$ and $\left(A_{2}, \vee, \wedge,(-)^{\sim}\right)$ be a two Pre A^{*} - algebras. A mapping $f: A_{1} \rightarrow A_{2}$ is called an Pre A^{*}-homomorphism if
(i) $f(a \wedge b)=f(a) \wedge f(b)$
(ii) $f(a \vee b)=f(a) \vee f(b)($ iii $) f\left(a^{\sim}\right)=(f(\mathrm{a}))^{\sim}$.

ISSN PRINT 23191775 Online 23207876

Research paper
© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

If in addition, f is bijective, then f is called an Pre A^{*}-isomorphism, and A_{1}, A_{2} are said to be isomorphic, denoted in symbols $A_{1} \cong A_{2}$.
2.15. Lemma: Let A be a Pre A^{*}-algebra with 1,0 . Suppose that for every $x \in A-\{0,1\}, x \vee x^{\sim}$ $\neq 1$. Define $\mathrm{f}: \mathrm{A} \rightarrow\{0,1,2\}$ by $f(1)=1, f(0)=0$ and $f(x)=2$ if $x \neq 0,1$. Then f is a Pre $A^{*}-$ algebra homomorphism.

§ 3 Generating Pre A* algebras:

In this section we generated Pre A*- algebras $\mathrm{A}(\mathrm{B})=\left\{\left(a_{1}, a_{2}\right) / a_{1}, a_{2} \in B\right.$ and $\left.a_{1} \wedge a_{2}=0\right\}$ and $\mathrm{A}_{B}=B \times B / \approx=\{\langle\mathrm{a}, \mathrm{b}\rangle /(a, b) \in B \times B\}$ from Boolean algebra where $\left.\langle\mathrm{a}, \mathrm{b}\rangle=\{(c, d) \in B \times B\rangle(a, b) \approx(c, d)\right\}$, the equivalence class containing $(\mathrm{a}, \mathrm{b}), \approx$ defined on $B \times B$ as $\quad(a, b) \approx(c, d)$ if and only if $a=c$ and $a^{\prime} b=c^{\prime} d$ and also we proved that $A_{B} \cong A(B)$. First we prove the following
3.1. Theorem: Let $\left(B, \wedge, \vee,(-)^{\prime}, 0,1\right)$ be a Boolean Algebra. Then $\mathrm{A}(\mathrm{B})=\left\{\left(a_{1}, a_{2}\right) / a_{1}, a_{2} \in B\right.$ and $\left.a_{1} \wedge a_{2}=0\right\}$ becomes a Pre A* algebra with $1=(1,0), 0=(0,1), 2=(0,0)$ and $\forall \mathrm{a}, \mathrm{b} \in \mathrm{A}(\mathrm{B})$,
(i) $\mathrm{a} \wedge \mathrm{b}=\left(a_{1} b_{1}, a_{1} b_{2}+a_{2} b_{1}+a_{2} b_{2}\right)$ where juxta position,,$+(-)^{\prime}$ respectively $\wedge, \vee,(-)^{\prime}$ in Boolean algebra B (ii) $\mathrm{a} \vee \mathrm{b}=\left(a_{1} b_{1}+a_{1} b_{2}+a_{2} b_{1}, a_{2} b_{2}\right)$ and (iii) $\tilde{a}=\left(a_{2}, a_{1}\right)$
3.2. Theorem: Suppose ${ }_{\left(B, \vee, \wedge,(-)^{\prime}, 0,1\right)}$ is Boolean algebra. Define \approx on $B \times B$ as $(a, b) \approx(c, d)$ if and only if $a=c$ and $a^{\prime} b=c^{\prime} d$. Then
(i) \approx is an equivalence relation on $B \times B$; $\langle a, b\rangle=\{(c, d) \in B \times B /(a, b) \approx(c, d)\}$, the equivalence class containing (a,b).Let $\mathrm{A}_{B}=B \times B / \approx=\{\langle\mathrm{a}, \mathrm{b}\rangle /(a, b) \in B \times B\}$.
(ii)For every $\langle\mathrm{a}, \mathrm{b}\rangle \in \mathrm{A}_{B}$ there exists $\mathrm{e}, \mathrm{f} \in B$ and ef $=0$ such that $(e, f) \in\langle a, b\rangle$ and (e,f) is unique.
(iii) Define, $\vee, \wedge,(-)^{\sim}$ on A_{B} as follows:

Assume that $\mathrm{A}_{B}=\{\langle a, \mathrm{~b}\rangle / a, b \in B, a b=0\}$.
(a) $\langle\mathrm{a}, \mathrm{b}\rangle \wedge\langle c, \mathrm{~d}\rangle=\langle\mathrm{ac}, \mathrm{ad}+\mathrm{bc}+\mathrm{bd}\rangle$ where juxta position, + , respectively \wedge, \vee in Boolean algebra B .
(b) $\langle\mathrm{a}, \mathrm{b}\rangle \vee\langle\mathrm{c}, \mathrm{d}\rangle=\langle\mathrm{ac}+\mathrm{ad}+\mathrm{bc}, \mathrm{bd}\rangle$
(c) $\langle\mathrm{a}, \mathrm{b}\rangle^{\sim}=\langle b, a\rangle$.Then $\left(\mathrm{A}_{B}, \vee, \wedge,(-)^{\sim}\right)$ is a pre A^{*} algebra.
(Note that in Pre A*-algebra $\left.\left.\left(A_{B}, \vee, \wedge,(-)^{\circ}\right), 1=<1,0\right\rangle, 0=<0,1>, 2=<0,0>\right)$.

4. The Pre A^{*}-algebra A_{x} :

ISSN PRINT 23191775 Online 23207876

Recall that for every Boolean algebra B and $a \in B$ the $\operatorname{set}(a]=\{x \in B / x \leq a\} \quad([a)=\{x \in B / x \leq$ a\}) is a Boolean algebra under the induced operations \wedge, \vee where the complementation is defined by $x^{*}=a \wedge x^{\prime}\left(x=a \vee x^{\prime}\right)$

In this section we prove that if A is a pre A^{*}-algebra and $\mathrm{x} \in \mathrm{A}$, then $A_{x}=\{s \in A / s \leq x\}$ is a Pre A^{*} algebra under the induced operations and A_{x} is isomorphic to a quotient algebra of A.
4.1 Theorem: Let A be a Pre A* algebra, $x \in A$, and $A_{x}=\{s \in A / s \leq x\}$. Then $\langle A, \wedge, \vee, *>$ is Pre A* algebra with 1 where \wedge, \vee are the operations in A restricted to $\mathrm{A}_{\mathrm{x}}, \mathrm{s}^{*}$ is defined by $x \wedge \tilde{s}^{\sim}$, the relation defined on Pre A* algebra A by $s \leq x$ if $s \wedge x=x \wedge s=x$

Proof : If $s \in A_{x}$, then
$x \wedge s^{*}=x \wedge\left(x \wedge s^{\sim}\right)=(x \wedge x) \wedge \tilde{S}^{\sim}=x \wedge \tilde{S}^{\sim}=S^{*}$.
So that $s^{*} \in A_{x}$ and

$$
\begin{aligned}
\mathrm{s}^{*} & =\left(\mathrm{s}^{*}\right)^{*}=\left(x \wedge s^{\sim}\right)^{*}=\left(x \wedge s^{\sim}\right)^{*}=x \wedge\left(x \wedge s^{\sim}\right)^{\sim} \\
& =x \wedge(\tilde{x} \vee \mathrm{~s})=x \wedge s=s
\end{aligned}
$$

Now, for $s, t \in A_{x}, \quad(s \wedge t)^{*}=x \wedge(s \wedge t)^{\sim}=x \wedge\left(s^{\sim} \vee t^{\sim}\right)$

$$
=\left(x \wedge s^{\sim}\right) \vee\left(\mathrm{x} \wedge \mathrm{t}^{\sim}\right)=\mathrm{s}^{*} \vee \mathrm{t}^{*}
$$

For $s, t \in A_{x}$

$$
\begin{aligned}
& s \wedge\left(s^{*} \vee t\right)=s \wedge\left(\left(x \wedge s^{\sim}\right) \vee \mathrm{t}\right)=\mathrm{s} \wedge\left(\mathrm{x} \wedge \mathrm{~s}^{\sim}\right) \vee(\mathrm{s} \wedge \mathrm{t}) \\
& =s \wedge(\tilde{s} \wedge \mathrm{x}) \vee(\mathrm{s} \wedge \mathrm{t})=\left(s \wedge \tilde{s}^{\sim}\right) \vee(\mathrm{s} \wedge \mathrm{t}) \\
& =s \wedge(\widetilde{\mathrm{~s}} \vee \mathrm{t})=\mathrm{s} \wedge \mathrm{t} \quad\left(\text { since } s, t \in A_{x}\right)
\end{aligned}
$$

The remaining properties hold in A_{x} since they hold in A. Hence $<A, \wedge, \vee,{ }^{*}>$ is a Pre A^{*} algebra . Observe that A_{x} is not a sub-algebra of A because the operation * is not the restriction of ${ }^{\sim}$ to A_{x}.
4.2 Theorem: Let A be a Pre A^{*} - algebra. Then the following hold:
(i) $\mathrm{A}_{\mathrm{x}}=\{x \wedge s / s \in A\}$
(ii) $\mathrm{A}_{\mathrm{x}}=\mathrm{A}_{\mathrm{y}}$ if and only if $\mathrm{x}=\mathrm{y}$ (iii) $\mathrm{A}_{\mathrm{x}} \cap \mathrm{A}_{\mathrm{y}} \subseteq \mathrm{A}_{\mathrm{x} \wedge \mathrm{y}}$
(iv) $\mathrm{A}_{\mathrm{x}} \cap \mathrm{A}_{\mathrm{x}^{\prime}}=\mathrm{A}_{\mathrm{x} \wedge \mathrm{x}^{\prime}}(\mathrm{v})\left(\mathrm{A}_{\mathrm{x}}\right)_{\mathrm{x} \wedge \mathrm{y}}=\mathrm{A}_{\mathrm{x} \wedge \mathrm{y}}$

Proof:

(i), (ii) and (iii) can be proved routinely.

ISSN PRINT 23191775 Online 23207876

For (iv), Let $\mathrm{s} \in \mathrm{A}_{\mathrm{x} \wedge \mathrm{x}^{\prime}}$, then $\left(x \wedge \tilde{x^{\prime}}\right) \wedge \mathrm{s}=\mathrm{s}$
Now $x \wedge s=x \wedge(x \wedge \tilde{x} \wedge \mathrm{~s})=\mathrm{x} \wedge \tilde{\mathrm{x}} \wedge \mathrm{s}=\mathrm{s}$
Again $x^{\sim} \wedge s=\tilde{x} \wedge(x \wedge \tilde{x} \wedge \mathrm{~s})=\mathrm{x} \wedge \mathrm{x}^{\sim} \wedge \mathrm{s}=\mathrm{s}$
For (v), $\left(\mathrm{A}_{\mathrm{x}}\right)_{\mathrm{x} \wedge \mathrm{y}}=\left\{x \wedge y \wedge t / t \in A_{x}\right\}$

$$
\begin{aligned}
& =\{x \wedge y \wedge x \wedge s / s \in A\} \\
& =\{x \wedge y \wedge s / s \in A\}=\mathrm{A}_{\mathrm{x} \wedge \mathrm{y}}
\end{aligned}
$$

4.3 Lemma: Let $f: A_{1} \rightarrow A_{2}$ be Pre A^{*} - algebra homomorphism where $\mathrm{A}_{1}, \mathrm{~A}_{2}$ are Pre A^{*} algebras with 1_{1} and 1_{2}. Then (i) If A_{1} has the element 2 , then $f(2)$ is the element of A_{2}
(ii) If $\mathrm{a} \in \mathrm{B}\left(\mathrm{A}_{1}\right)$, then $\mathrm{f}(\mathrm{a}) \in \mathrm{B}\left(\mathrm{A}_{2}\right)$
4.4 Theorem: Let A be a Pre A^{*}-algebra with 1 and $\mathrm{x} \in \mathrm{A}$, then the mapping $\alpha_{x}: A \rightarrow A_{x}$ defined by $\alpha_{x}(s)=x \wedge s$ for all $\mathrm{S} \in \mathrm{A}$ is a homomorphism of A onto A_{x} with kernel θ_{x} and hence $A / \theta_{x} \cong A_{x}$

Proof: For $\mathrm{s} \in \mathrm{A}, x \wedge s \leq x$ and hence $x \wedge s \in A_{x}$.
Let $\mathrm{s}, \mathrm{t} \in \mathrm{A}$, then

$$
\begin{gathered}
\alpha_{x}(x \wedge s)=x \wedge s \wedge t=x \wedge s \wedge x \wedge t=\alpha_{x}(s) \wedge \alpha_{x}(s) \\
\alpha_{x}\left(s^{\sim}\right)=\mathrm{x} \wedge s^{\sim}=x \wedge\left(x^{\sim} \vee \mathrm{s}^{\tilde{\prime}}\right)=\mathrm{x} \wedge(\mathrm{x} \wedge \mathrm{~s})^{\sim} \\
=(x \wedge s)^{*}=\left(\alpha_{x}(s)\right)^{*}
\end{gathered}
$$

We can prove that $\alpha_{x}(s \vee t)=\alpha_{x}(s) \vee \alpha_{x}(t)$. Hence α_{x} is a Pre A* homomorphism. Now $s \in A_{x}$, we have $\alpha_{x}(s)=s$. Therefore α_{x} is onto homomorphism. Hence by the fundamental theorem of homomorphism A/ker $\alpha_{x} \cong A_{x}$ and $\operatorname{Ker} \alpha_{x}=\left\{(s, t) \in A \times A / \alpha_{x}(s)=\alpha_{x}(t)\right\}$

$$
=\{(s, t) \in A \times A / x \wedge s=x \wedge t\}=\theta_{x} \text { Thus } A / \theta_{x} \cong A_{x}
$$

References:

1. Birkhoff.G, Lattice theory, American Mathematical Society, Colloquium publishers, New York, 1948.
2.Chandrasekhara Rao.K,Venkateswara Rao.J and Koteswara Rao.P, Pre A* - Algebras, Journal of Institute of Mathematics \& Computer Sciences, Math.Ser.Vol.20,No.3(2007)157-164.
2. Fernando Guzman and Craig C. Squir, The algebra of conditional logic, Algebra Universalis,27(1990) $88-110$.

ISSN PRINT 23191775 Online 23207876

4. Huntington E.V, Trans. AMS 35(1933) 274-304.
5. Koteswara Rao.P, A*- algebras and if-then- else structures (Ph.D., thesis), Acharya Nagarjuna University, A.P., India, 1994
6. Manes E.G., The Equational Theory of Disjoint Alternatives, Personal communication to Prof. N.V.Subrahmanyam (1989).
7. Manes E.G., Adas and the Equational Theory of If-then -else, Algebra Universalis 30(1993), 373-394
8. Venkateswara Rao.J, On A*-algebras (Doctoral Thesis), Acharya Nagarjuna University, A.P., India 2000.
