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ABSTRACT: 

This paper explores Boolean algebra postulate systems, aiming to derive a minimal set of axioms. 

It delves into the algebraic structure of Pre A*-algebras and establishes the congruence relation 

on them. Defining a ternary operation as a conditional statement, the paper explores its 

properties. Pre A* algebras are obtained from Boolean Algebra B, and it is proven that if A is a 

Pre A*-algebra and x is in A, then Ax is a Pre A*-algebra, isomorphic to a quotient algebra of A. 
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§ 0. INTRODUCTION: 

 In a drafted paper [6], The Equational theory of Disjoint Alternatives, around 1989, 

E.G.Maines introduced the concept of Ada,  2,1,0,(-),)(-,,, A  which however differs from the 

definition of the Ada [7]. While the Ada of the earlier draft seems to be based on extending the 

If-Then-Else concept more on the basis of Boolean algebras, the latter concept is based on C-

algebras    ~,,, A  introduced by Fernando Guzman and Craig C. Squir [3]. 

In 1994, P.Koteswara Rao [5] firstly introduced the concept of A*-algebra     2,1,0,-  ~,,,, A  

and studied the equivalence with Ada [6], C-algebra [3], and Ada [7] and its connection with 3- 
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ring, Stone type representation and introduced the concept of A*-clone and the If-Then-Else 

structure over A*-algebra and ideal of A*-algebra.  

                  In 2000, J.Venkateswara Rao [8] introduced the concept Pre A*-algebra    , , ,  A     

analogous to C-algebra as a reduct of A*- algebra. 

 

§ 1. BOOLEAN ALGEBRA: 

1.1. Definition: A Boolean algebra is algebra  , , ,( ) ,0,1B     with two binary operations, one 

unary operation (called complementation), and two nullary operations which satisfies: 

(1)  , ,B    is a distributive lattice. 

(2) 0 0,   x 1 1  for all x Bx     . 

(3) B xallfor   1x   x,0  xx . 

We can easily verify that yx)y(x  , )(   ,  yxyxxx  for all Byx , . 

 1.2.Note:Alternative systems of postulates of Boolean Algebras were intensively studied during 

the decades 1900-1940. E.V.Huntingtion wrote an influential early paper [4] on this subject. No 

attempt will be made here to survey the extensive literature on such postulate systems. We 

present here Huntington’s postulates and a new set of postulates of our own for Boolean algebra.  

1.3. Huntington’s Theorem [1]:  Let B has one binary operation   and one unary operation 

')( and define 

 (i) Bbababa  ,,)'''( .  

Suppose for all a, b, c B, 

(ii)  a b= b a,             (iii) cbacba  )()(  and 

(iv) ababa  )'()( .   Then B is a Boolean algebra. 

1.4. Theorem [8]:  Let B has one binary operation  and one unary operation )(   and define  

(i) Bbababa  ,    ,)'''( .  

Suppose for all a, b, c B, 

(ii) a b= b a,            (iii) cbacba  )()(  and 

(iv) ababa  )'()( . Then B is a Boolean algebra. 

§ 2.Pre A* Algebra: 

2.1. Definition:  
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An algebra (A, , , (-)
~
) satisfying  

(a) x
~~

 = x ,  xA,   (b) x  x = x ,  xA, 

(c) x  y = y  x ,   x, y A,      

(d) (x  y)
~
 = x

~
  y

~
 ,  x, y A,      

(e) x  (y  z) = (x  y)  z ;  Azyx  ,, , 

(f) x  (y  z) = (x  y)  (x  z) ; Azyx  ,, , 

(g) x  y = x  (x
~
  y) for all x, y, z  A,   

is called a Pre A*-algebra 

2.2. Eample: 

3 = {0, 1, 2} with , , (-)
~
 defined below is a Pre A*-algebra. 

         

 0 1 2   0 1 2  x x
~
 

0 0 0 2  0 0 1 2  0 1 

1 0 1 2  1 1 1 2  1 0 

 2 2 2 2  2 2 2 2  2 2 

 

2.3. Note:The elements 0, 1, 2 in the above example satisfy the following laws: 

(a) 2
~
 = 2             (b) 1  x = x for all x  3               

(c) 0  x = x for all x  3   (d) 2  x = 2  x = 2 for all x  3. 

 

2.4. Example: 2 = {0, 1} with  , , (-)
~
 defined below is a Pre A*-algebra. 

    

 0 1   0 1  x x
~
 

0 0 0  0 0 1  0 1 

1 0 1  1 1 1  1 0 

 

2.5. Note: Actually  )
~

(,,,2   is a Boolean algebra. So every Boolean algebra is a Pre A* algebra. 
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2.6. Definition: Let A be a Pre A*-algebra. An element x A is called central element of A if 

 =1x x  and the set             

 { x  A/  =1x x } of all central elements of A is called the centre of A and it is denoted by 

B(A).The set B(A) is a Boolean algebra with )
~

(,,  . 

2.7. Lemma:  Every Pre A*-algebra satisfies the following laws. 

(a)   x x) ~(  xx    (b)  y) ~(xy)(xy) ~(  xx  

(c)  xx) ~(  xx   (d)   ~xxy ~  xx  

Proof: (a) 

We have x  y = x  (x
~
  y)       (By 2.1 (g)) 

             x) ~(x x  xx  

              ~x)) ~(x(x   ~)(  xx  

             ~x) ~(x ~ x  ~  x     (By 2.1 (b)) 

            ) ~x(x ~ x  ~  x      

            x) ~(  xxx  

(b)  Use 2.1(f) and 2.1(c) 

(c)   x ) ~( xx x) ~()(  xxx  (By 2.7 (b)) 

                               = x) ~(  xx         (By 2.1 (b)) 

                               = x                         (By 2.7 (a)) 

(d) Can be verified routinely. 

2.8. Lemma: Let A be a Pre A*algebra with 1, 0 and let  

x,  y A 

(a) If  ,0 yx   then x = 0 

(b) If  ,1 yx    then 1 ~ xx  

Proof: (a)   0  x  x  

           yxx                             ( 0 yx ) 

           yx    = 0                            ~)1.2( b  

( b)   1 = yx   

            = y) ~(  xx                        ~)1.2( g  

            = y)(x) ~(  xx 1) ~(  xx ) ~( xx   
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2.9. Definition: A relation  on a Pre –A* algebra (A, , , (-)
~
)  is called congruence relation if  

(i)   is an equivalence relation 

(ii )  is closed under  , , (-)
~ 

. 

2.10. Lemma: Let  (A, , , (-)
~
)  be a Pre A*-algebra and let Aa .Then the relation 

} /),{( yaxaAAyxa   is  

(i) a congruence  relation (ii) aaaa      

we will write  y ax  to indicate ayx ),(  

2.11. Definition:    Let A be a  Pre -A* algebra. If   

x, p, q A , define the ternary operation q) ~()(),(  xpxqpx ( ),( qpx  should be viewed as 

conditional “ if x, then p, else q”). 

2.12. Lemma: Every Pre-A* algebra with the indicated constants satisfies the following laws. 

( i )  2),(2  qp    (ii)   2)2,2( x  

(iii)  pqp  ),(1   (iv)   qqp  ),(0    (v)    xx  )0 ,1(  

Proof: By inspection. 

Definition:  Let A be a Pre A*- algebra and Ax .Define }),(/),{( pqpAAqp xx   

Lemma:  Let A be a Pre A*-algebra and Ax . Then  

(i) xx   

(ii ) x  is transitive but it is neither reflexive nor symmetric. 

Theorem: Let A be a Pre A* algebra with 1 and x B(A) then 

(i) xx    (ii)  x  is congruence relation on A 

2.13. Lemma: Every Pre-A* algebra satisfies the laws: 

(i) ) ~q, ~( ~),( x pqpx   

(ii) r) q  ,r  (r ),( x  pqpx  

(iii)  r) q  ,r  (r ),( x  pqpx  

(iv) )),(, ),(()),(, ),(( xy sqrpsrqp xyyx   

2.14. Definition:  Let ) ~)(,,,( 1 A and ) ~)(,,,( 2 A be a two Pre A*- algebras. A mapping 

21: AAf  is called an Pre A*-homomorphism if  

(i) )()()( bfafbaf     (ii) )()()( bfafbaf  (iii)  ~(f(a))) ~( af . 
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If in addition, f is bijective, then f is called an Pre A*-isomorphism, and 21, AA  are said to be 

isomorphic, denoted in symbols 21 AA  . 

2.15. Lemma: Let A be a Pre A*-algebra with 1, 0. Suppose that for every x  A – {0, 1}, x  x
~
 

 1. Define f : A  {0, 1, 2} by f(1) = 1, f(0) = 0 and f(x) = 2 if x  0, 1. Then f is a Pre A*-

algebra homomorphism. 

§ 3 Generating Pre A* algebras: 

 In this section we generated Pre A*- algebras A(B)=   1 2 1 2 1 2, / ,   0a a a a B and a a   and 

/  = { a,b / ( , ) }B B B a b B B        from Boolean algebra where a,b {( , ) / ( , ) ( , )}c d B B a b c d      , the equivalence 

class containing (a,b), defined on  B B  as   ( , ) ( , )a b c d   if and only if ca  and dcba ''   and also 

we proved that ( )BA A B . First we prove the following 

3.1. Theorem:  Let   1,0,)(,,, B  be a Boolean Algebra. Then A(B)=   1 2 1 2 1 2, / ,   0a a a a B and a a    

becomes a Pre A* algebra with 1= (1,0) , 0 = (0,1),  2=(0,0)  and   a , b A(B), 

(i) a  b = ),( 22122111 babababa    where juxta  position , +, )(   respectively   ,  , )(   in 

Boolean algebra B (ii) a  b = 
1 1 1 2 2 1 2 2( , )a b a b a b a b  and (iii)  12, ~ aaa   

3.2. Theorem: Suppose ( , , ,( ) ,0,1)B     is Boolean algebra. Define  on  B B  as   ( , ) ( , )a b c d  

if and only if ca  and dcba ''  .Then  

 (i)   is an equivalence relation on B B  ; a,b {( , ) / ( , ) ( , )}c d B B a b c d      , the equivalence class containing 

(a,b).Let /  = { a,b / ( , ) }B B B a b B B        . 

(ii)For every a,b 
B there exists e,f B  

and ef=0 such that (e,f) a,b   and (e,f) is unique. 

(iii) Define, , ,( )     on  
B  as follows: 

Assume that  = { a,b / , , 0}B a b B ab     . 

(a) a,b ,d ac,ad+bc+bdc         where juxta position, +, respectively ,  in Boolean algebra B. 

(b) a,b ,d ac+ad+bc,bdc         

(c ) a,b    = ,b a  .Then ( , , ,( ) )B     is a pre A* algebra. 

(Note that in Pre A*-algebra ( , , ,( ) )BA    , 1 1,0 ,  0 0,1 ,   2 0,0  ). 

4. The  Pre A*-algebra  Ax : 
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Recall that for every Boolean algebra B and     a B  the set(a] ={ xB / x≤ a}  ([a) ={ xB / x≤ 

a}) is a Boolean algebra under the induced operations  , where the complementation is defined 

by x* = ax’ (x =a  x’ ) 

In this section we prove that if A is a pre A*-algebra and xA, then { / }xA s A s x    is a Pre A*-

algebra  under the induced operations and Ax is isomorphic to a quotient algebra of A. 

4.1 Theorem: Let A be a Pre A* algebra, ,x A and { / }xA s A s x   .Then  ,*,,A is Pre A* 

algebra with 1 where , are the operations in  A restricted to Ax ,  s* is defined by  ~sx  , the  

relation defined on Pre A* algebra  A by xs   if xsxxs   

Proof : If xAs ,then  

) ~(* sxxsx  =  ~)( sxx  =  ~sx  =s*. 

So that  xAs *  and  

s**=(s*)*= *) ~( sx  = *(  ) (  ) x s x x s     

     = s) ~(  xx = ssx   

Now, for xAts , ,  *)( ts  =  ~)( tsx  = ) ~t ~(  sx       

                                     = ) ~t(x) ~(  sx =s* v t* 

For  xAts ,  

t)(s) ~s(xs)t ) ~(()  *(  sxstss   

                     = t)(sx) ~(  ss = t)(s) ~(  ss     

                     = tst) ~(s s   (since xAts , ) 

The remaining properties hold in Ax  since they hold in A. Hence  ,*,,A is a Pre A* algebra .  

Observe that Ax  is not a sub-algebra of  A because the operation * is not the restriction  ~  of  to 

Ax . 

 

4.2 Theorem: Let A be a Pre A*- algebra. Then the following hold: 

(i) Ax  = }/{ Assx   

(ii) Ax = Ay if and only if  x = y (iii) Ax  Ay    Axy 

(iv) Ax   Ax  = Ax x  (v) (Ax)x y = Axy 

Proof: 

(i), (ii)  and (iii) can be proved routinely.  
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For (iv) , Let  sAx x , then  ss) ~(  xx  

Now ss ~xxs) ~(  xxxsx  

Again ss ~xxs) ~( ~ ~  xxxsx  

For  (v) ,   (Ax)x y  = }/{ xAttyx            

                         = }/{ Assxyx   

                         = }/{ Assyx  = Axy 

4.3 Lemma:  Let 21: AAf   be Pre A* - algebra homomorphism where A1, A2 are Pre A* 

algebras with 11and 12 . Then    (i) If A1 has the element 2, then f(2) is the element of A2 

(ii) If  aB(A1) , then  f (a)B(A2 ) 

4.4 Theorem: Let A be a Pre A*-algebra with 1 and xA, then the mapping :x xA A  defined by 

( )x s x s    for all sA is a homomorphism of A onto
xA  with kernel 

x and hence 

/ x xA A   

Proof: For sA, x s x   and hence 
xx s A  .  

Let s, t A, then  

( )x x s x s t     = x s x t   ( ) ( )x xs s    

(  ) =  x  (  s ) =  x (x s) x s s x x        

           = ( )* ( ( ))*xx s s   

We can prove that ( ) ( ) ( )x x xs t s t     . Hence 
x  is a Pre A* homomorphism. Now 

xs A , we 

have ( )x s s  . Therefore 
x  is onto homomorphism. Hence by the fundamental theorem of 

homomorphism /  x xA ker A   and Ker
x ={( , ) / ( ) ( )}x xs t A A s t     

           ={( , ) / }s t A A x s x t     =
x  Thus / x xA A   
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