IJEANS International Journal of Food and Nutritional Sciences

Research paper (G} PR T NNERN B (SR NS S MUGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

Investigating Pre A* Algebras as an Emerging Paradigm

T. Nageswara Raol, a),
1) Department of Engineering Mathematics, College of Engineering, Koneru Lakshmaiah
Education Foundation, VVaddeswaram, Guntur, Andhra Pradesh, India.

tnraothota@Xkluniversity.in

J onnalagadda VenkateswaraRao 2,b)
2) Department of Mathematics, School of Science & Technology, United States International
University, USIU-Africa, P.O. Box 14634 - 00800 Nairobi, Kenya. jvrao@usiu.ac.ke

ABSTRACT:

This paper explores Boolean algebra postulate systems, aiming to derive a minimal set of axioms.
It delves into the algebraic structure of Pre A*-algebras and establishes the congruence relation
on them. Defining a ternary operation as a conditional statement, the paper explores its
properties. Pre A* algebras are obtained from Boolean Algebra B, and it is proven that if A is a

Pre A*-algebra and x is in A, then Ax is a Pre A*-algebra, isomorphic to a quotient algebra of A.
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8 0. INTRODUCTION:

In a drafted paper [6], The Equational theory of Disjoint Alternatives, around 1989,
E.G.Maines introduced the concept of Ada, (AAv,(-),(),.0L2) which however differs from the
definition of the Ada [7]. While the Ada of the earlier draft seems to be based on extending the
If-Then-Else concept more on the basis of Boolean algebras, the latter concept is based on C-
algebras (a~v.(-y) introduced by Fernando Guzman and Craig C. Squir [3].

In 1994, P.Koteswara Rao [5] firstly introduced the concept of A*-algebra (a1 (),.012)

and studied the equivalence with Ada [6], C-algebra [3], and Ada [7] and its connection with 3-
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ring, Stone type representation and introduced the concept of A*-clone and the If-Then-Else
structure over A*-algebra and ideal of A*-algebra.

In 2000, J.Venkateswara Rao [8] introduced the concept Pre A*-algebra (A v.(-))

analogous to C-algebra as a reduct of A*- algebra.

§ 1. BOOLEAN ALGEBRA:

1.1. Definition: A Boolean algebra is algebra (B,A,v,(-),0,1) with two binary operations, one
unary operation (called complementation), and two nullary operations which satisfies:

(1) (B,A,v) is adistributive lattice.

(2) xA0=0, xv1=1 forallxeB.

(3) xAx=0, xvx=1frallxeB.

We can easily verify that x'=x, (xvyy=xay, xayy=xvy forallxyeB.

1.2.Note:Alternative systems of postulates of Boolean Algebras were intensively studied during
the decades 1900-1940. E.V.Huntingtion wrote an influential early paper [4] on this subject. No
attempt will be made here to survey the extensive literature on such postulate systems. We
present here Huntington’s postulates and a new set of postulates of our own for Boolean algebra.
1.3. Huntington’s Theorem [1]: Let B has one binary operation v and one unary operation
(-) and define

(i) arb=(avb),vabeB.

Suppose for all a, b, ¢ €B,

(i) avb=bva, (i) av(vec)=(avbyvc and

(iv) @ab)v(@nb)=a. Then B isa Boolean algebra.

1.4. Theorem [8]: Let B has one binary operation A and one unary operation (-)’ and define

(i) avb=(aab)y, vabeB.

Suppose for all a, b, ¢ €B,

(ilavb=Dbva, (iii) avve) =(avbve and

(iv) @anb)v(arb)=a. Then B is a Boolean algebra.

§ 2.Pre A* Algebra:

2.1. Definition:

624 |Page



IJEANS International Journal of Food and Nutritional Sciences

Research paper (G} PR T NNERN B (SR NS S MUGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

An algebra (A, A, v, (-)) satisfying

@x =x,VxeA, (b)xAx=X,VXeA,

O XAYy=yAX, VX VYEA,

d)(xXAy) =X vy ,VXYEA

@ XAYAZ)=(XAY)AZ; VX Yy, zeA,
PHXAYVZ)=XXAY)VXAZ); VXY zeA,

@ xAay=xaX vy)forallx,y zeA,

is called a Pre A*-algebra

2.2. Eample:

3={0, 1, 2} with A, v, (-)” defined below is a Pre A*-algebra.

N O o o
N R O
NN NN
N R Ol <
N B O O
N e o
NN NN
N B O x
N O - X

A

0

1
2

2.3. Note: The elements 0, 1, 2 in the above example satisfy the following laws:
@2 =2 (b)Lax=xforallx e3

(c)0vx=xforallxe3 (d)2Ax=2vx=2forallx € 3.

2.4. Example: 2 = {0, 1} with A, v, (-)" defined below is a Pre A*-algebra.

A ‘0 1 V‘O 1 x‘x'~
0 0 0 00 1 0|1
1 0 1 111 1 110

2.5. Note: Actually (2,v,A, (—5) is a Boolean algebra. So every Boolean algebra is a Pre A* algebra.
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2.6. Definition: Let A be a Pre A*-algebra. An element x €A is called central element of A if

xv x=1 and the set

{ x € Al xvx=1} of all central elements of A is called the centre of A and it is denoted by

B(A).The set B(A) is a Boolean algebra with . .

2.7. Lemma: Every Pre A*-algebra satisfies the following laws.

@ xv(a=x (b)) xvX)Ay=(xry)v(KAY)
©) xvx)ax=x (d) xaAxXAy=xax"
Proof: (a)
Wehavex Ay=xaA (X vy) (By2.1(g)
SXAX=X AKXV X)
=(XAX) =XAK V)
=>x =xvxvx~ (By21(b))
=X =XV (X AX)
=x=xv (X AX)
(b) Use 2.1(f) and 2.1(c)
(©) xvx)ax=xax)v(xax (By2.7 (b))
=xv (XAX) (By 2.1 (b))
=X (By 2.7 (a))
(d) Can be verified routinely.
2.8. Lemma: Let A be a Pre A*algebra with 1, 0 and let
X, Yy €A
@ If xvy=0, thenx=0
(b) If xvy=1 then xvx=1

Proof: (a) x=xvo0

=XVXVY (xvy=0)

=xvy =0 @.1)”
(b) 1=xvy

= xv(XAY) (219)"

XVX)IAXVY)=(XVvX)Al=(XvX)
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2.9. Definition: A relation 6 on a Pre —A* algebra (A, A, v, (-)7) is called congruence relation if
(i) 6 isan equivalence relation

(ii ) 6 is closed under A, v, ().

2.10. Lemma: Let (A, A, v, (-)7) be aPre A*-algebra and let a< A.Then the relation

0, ={(x,y)e AxAlarx=any} IS

(i) a congruence relation (ii) 6, N6,y =6,

we will write xg,y to indicate (x,y)eé6,

2.11. Definition: Let A bea Pre -A* algebra. If

X, P, q €A, define the ternary operation 1, (p,g)=(x» p) v (X ~q) (I (p,q) Should be viewed as

conditional ““ if X, then p, else ™).

2.12. Lemma: Every Pre-A* algebra with the indicated constants satisfies the following laws.
(i) =2 (i) 5E2=2

(i) npay=p (V) T(pa)=q (V) T@0)=x

Proof: By inspection.

Definition: Let A be a Pre A*- algebra and xe A.Define v, ={(p,q) e Ax A/T,(p,q) = p}
Lemma: Let A be a Pre A*-algebraand xeA. Then

(1) vx by

(ii) w, is transitive but it is neither reflexive nor symmetric.

Theorem: Let A be a Pre A* algebra with 1 and xe B(A) then

(i) w, =6, (il) w, iscongruence relation on A

2.13. Lemma: Every Pre-A* algebra satisfies the laws:

(i) Tx(p.a)y=Tx(p™0)

(i) T(p. ) AT=Tx(PAT, qAT)

(iil) T(p.a)vr=Ty(pvr, qvn)

(iv) T(Ty(p.a) Iy (r,9)) =y (T (P.1) T (a.9))

2.14. Definition: Let(A,v.A () and (a,v.A (-)) be a two Pre A*- algebras. A mapping

f:A — Als called an Pre A*-homomorphism if

(i) f@arb)y=f@ A f(b) (i) favb)=f(a)v f) (i) f@)=(a) .
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If in addition, f is bijective, then f is called an Pre A*-isomorphism, and A, A, are said to be
isomorphic, denoted in symbols A = A, .
2.15. Lemma: Let A be a Pre A*-algebra with 1, 0. Suppose that for every x € A—{0, 1}, X v X~
# 1. Definef: A—> {0, 1,2} by f(1) =1, f(0) = 0and f(x) =2 if x # 0, 1. Then f is a Pre A*-
algebra homomorphism.
8 3 Generating Pre A* algebras:

In this section we generated Pre A*- algebras A(B)={(a,a,)/a,a cBand a ra -0}and
A, =BxB/~ ={aby/(ab)eBxB}from Boolean algebra where @ _¢ca)cexB/@n~cay, the equivalence
class containing (a,b), ~defined on BxB as (ab)~(c,d) ifandonlyif a=cand ab=cd and also
we proved that A, = A(B) . First we prove the following
3.1. Theorem: Let (B.Av.(-),01) be a Boolean Algebra. Then A(B)={(a,a,)/a,a,<B and a ra, =0}
becomes a Pre A* algebra with 1= (1,0), 0 = (0,1), 2=(0,0) and ¥V a, b €A(B),
(1) a A b = (aby,a4b, + b +ah,)  Where juxta position , +, (=)' respectively A, v, (=) in
Boolean algebra B (ii) a v b = (ajp +ab, +aj,ab,) and (iii) a™=(ay,a)
3.2. Theorem: Suppose ...~ yo01 IS Boolean algebra. Definex~ on BxB as (ab)~(c,d)
ifand only if a=cand ab=c'd.Then
(i) =~ is an equivalence relation on BxB ; @b -{c.d)cBxB/@b)~(@d)}, the equivalence class containing
(a,b).Let A, =BxB/~ ={ab)/(ab)cBxB}.
(if)For every(ab) € A, there exists e,feB
and ef=0 such that (e,f) <(aby and (e,f) is unique.
(iii) Define, v,A,(9~ on A, as follows:
Assume that A, ={(ab)/abeB,ab=0}.
() (aby A(c,dy=(ac,ad+bc+bdy Where juxta position, +, respectively a,vin Boolean algebra B.
(b) (ab) v (c,dy = (ac+ad+bc,bd)
(c)aby~= (b,ay.Then (A,,v,A,(-)) isapre A* algebra.
(Note that in Pre A*-algebra(a,,v.A.(-)), 1=<1,0>, 0=<0,1>, 2=<0,0>).

4. The Pre A*-algebra Ay:
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Recall that for every Boolean algebra B and a B the set(a] ={ xeB/x<a} ([a) ={ xeB/x<
a}) is a Boolean algebra under the induced operations A ,v where the complementation is defined
by x* =anx’ (x=avx’)
In this section we prove that if A is a pre A*-algebra and XxeA, then A ={seA/s<x} IS a Pre A*-
algebra under the induced operations and Ay is isomorphic to a quotient algebra of A.
4.1 Theorem: Let A be a Pre A* algebra, xe A and A ={seA/s<x}.Then <Anxv,*>is Pre A*
algebra with 1 where A,vare the operations in A restricted to Ay, s* is defined by xAs™, the
relation defined on Pre A* algebra A by s<x if sax=xas=x
Proof : If se A, ,then
XAS*=XA(XAS)= (XAX)AS =xAs =S*,
So that s*eA, and
S*¥*=(S*)*= (xA8)*= (XAS) =XA(XASY)
=SXA(XVS)=XAS=S
Now, for steA,, (SA)*=XA(SAt) =xA(SVL)
S(XAS)V(XAt)SS*VE*
For stea,
SA(B*VE)=sA((XAS)VE)=SA(XAS)V(SAL)
S SA(SAXNVEADT (SAS)VI(SAL)
= sa(svit)=sat (SINCE steA)
The remaining properties hold in Ay since they hold in A. Hence <Axv,*>is a Pre A* algebra .
Observe that A, is not a sub-algebra of A because the operation * is not the restriction of ~ to

Ay .

4.2 Theorem: Let A be a Pre A*- algebra. Then the following hold:
(1) Ax = {xrs/seA}

(i) Ax=Ayifandonly if x =y (iii) AxNn Ay < Axy

(V) Ax N A =Ax (V) (Adxny = Axny

Proof:

(i), (1) and (iii) can be proved routinely.

629 |Page



IJEANS International Journal of Food and Nutritional Sciences

Research paper (G} PR T NNERN B (SR NS S MUGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

For (iv), Let se Ax.x ,then (xaAx)as=s
NOW xAs=XxA(XAX AS)=XAX AS=S
AQain x As=X A(XAX AS)=XAX AS=S
For (V), (Ax.y ={xayatiteA}

= {XAyaxnas/seA}

= {xaynaslseAY= Ay
4.3 Lemma: Let f:A — A, be Pre A* - algebra homomorphism where Az, A, are Pre A*
algebras with 1;and 1, . Then (i) If A; has the element 2, then f(2) is the element of A;
(i) If aeB(A1), then f (a)eB(A;)
4.4 Theorem: Let A be a Pre A*-algebra with 1 and x e A, then the mapping «,: A— A defined by
a,(s)=x~s forall se A is a homomorphism of A onto A with kernel ¢, and hence
AlG,=A
Proof: Forse A, xas<x and hence xaseA .
Lets, t €A, then
A (XAS) = XASAt EXASAXAL =, (S) A, (S)
2 ()= XAS =XA(X V)= XA(XAS)

= (xAs)*=(a, () *
We can prove that o,(svt)=a,(s)v,(t) . Hence «, is a Pre A* homomorphism. Now se A , we
have «,(s)=s. Therefore «, is onto homomorphism. Hence by the fundamental theorem of
homomorphism A/ker o, = A and Ker o, ={(s,t) e Ax A/ &, (5) = &, (1)}
={(s,t) e AxAl xas=xat}=6, Thus A/g,=A
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