## ISSN PRINT 23191775 Online 23207876

# Cycle Related ${ }^{\text {th }}$ Fibonacci Prime Labeling Of Graphs 

K. Periasamy ${ }^{1}$ and K. Venugopal ${ }^{2}$<br>${ }^{1}$ Guest Lecturer, P.G. and Research Department of Mathematics, Dr. Kalaignar Government Arts college, Affiliated to Bharathidasan University, Tiruchirappalli, India.<br>${ }^{2}$ Assistant Professor, P.G. and Research Department of Mathematics, Dr. Kalaignar Government Arts college, Kulithalai- 639120, Affiliated to Bharathidasan University, Tiruchirappalli, India.<br>${ }^{1}$ kpsperiasamy87@ gmail.com<br>²drvenugopal2013@gmail.com


#### Abstract

: In this paper, we investigate the $\mathrm{k}^{\text {th }}$ fibonacci prime labeling of two new families of graphs, which are a graph $G$ is obtained by joining two cycles $C_{n}$ and $C_{m}$ by a path $P_{s}$ and a graph $G$ is obtained by joining two cycles $\mathrm{C}_{\mathrm{n}}$ and $\mathrm{C}_{\mathrm{m}}$ by a triangular snake $\mathrm{T}_{\mathrm{s}}$.

Keywords - fibonacci number, fibonacci prime labeling, fibonacci prime graph, triangular snake, $\mathrm{k}^{\text {th }}$ fibonacci prime graph.


## 1. INTRODUCTION

By a graph, we mean a finite, undirected graph without loops and multiple edges, for terms not defined here, we refer to Bondy and Murthy [1]. For standard terminology and notations related to number theory we refer to Burton [2] and graph labeling, we refer to Gallian [3]. The notion of prime labeling for graphs originated with Roger Entringer and was introduced in a paper by Tout et al. [6]. In [7], Vaidya et al. introduced the concept of k-prime labeling of graph. Sekar et al. introduced the concept of Fibonacci Prime Labeling of Graphs in [5]. Periasamy et al. introduced $\mathrm{k}^{\text {th }}$ Fibonacci Prime Labeling of Graphs and $\mathrm{k}^{\text {th }}$ Fibonacci Prime Labeling of some standard graphs are discussed in [4]. In this paper, we present the $\mathrm{k}^{\text {th }}$ Fibonacci prime labeling of a graph $G$ is obtained by joining two cycles $C_{n}$ and $C_{m}$ by a path $P_{s}$ and a graph $G$ is obtained by joining two cycles $C_{n}$ and $C_{m}$ by a triangular snake $T_{s}$.

Definition :1.1 A graph labeling is the assignment of unique identifiers to the edges and vertices of a graph.
Definition :1.2 Let $G=(V, E)$ be a graph with $n$ vertices. A function $f: V(G) \rightarrow\{1,2,3, \ldots, n\}$ is said to be a prime labeling, if it is bijective and for every pair of adjacent vertices $u$ and $v$, $\operatorname{gcd}(f(\mathrm{u}), \mathrm{f}(\mathrm{v}))=1$. A graph which admits prime labeling is called a prime graph.
Definition : 1.3 The Fibonacci number $f_{n}$ is defined recursively by the equations $f_{1}=1, f_{2}=1$,

## ISSN PRINT 23191775 Online 23207876

$f_{n+1}=f_{n}+f_{n-1}(n \geq 2)$. Then $\operatorname{gcd}\left(f_{n}, f_{n-1}\right)=1$ and $\operatorname{gcd}\left(f_{n}, f_{n+1}\right)=1$ for all $n \geq 1$.
Definition : 1.4 A Fibonacci prime labeling of a graph $G=(\mathrm{V}, \mathrm{E})$ with $|\mathrm{V}(\mathrm{G})|=\mathrm{n}$ is an injective function $\mathrm{g}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{\mathrm{f}_{2}, \mathrm{f}_{3}, \ldots, \mathrm{f}_{\mathrm{n}+1}\right\}$, where $\mathrm{f}_{\mathrm{n}}$ is the $\mathrm{n}^{\text {th }}$ Fibonacci number, that induces a function $\mathrm{g}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$ defined by $\mathrm{g}^{*}(\mathrm{uv})=\operatorname{gcd}\{\mathrm{g}(\mathrm{u}), \mathrm{g}(\mathrm{v})\}=1, \forall \mathrm{uv} \in \mathrm{E}(\mathrm{G})$. The graph admits a Fibonacci prime labeling and is called a Fibonacci prime graph.
Definition : 1.5 A k ${ }^{\text {th }}$ Fibonacci prime labeling of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with $|\mathrm{V}(\mathrm{G})|=\mathrm{n}$ is an injective function $g: V(G) \rightarrow\left\{f_{k}, f_{k+1}, \ldots, f_{k+n-1}\right\}$, where $f_{k}$ is the $\mathrm{k}^{\text {th }}$ Fibonacci number, that induces a function $\mathrm{g}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$ defined by $\mathrm{g}^{*}(\mathrm{uv})=\operatorname{gcd}\{\mathrm{g}(\mathrm{u}), \mathrm{g}(\mathrm{v})\}=1, \forall \mathrm{uv} \in \mathrm{E}(\mathrm{G})$. The graph admits a $\mathrm{k}^{\text {th }}$ Fibonacci prime labeling and is called a $\mathrm{k}^{\text {th }}$ Fibonacci prime graph.
Remark : 1.1 A $2^{\text {nd }}$ Fibonacci prime graph is called Fibonacci prime graph.

## 2. Main Results

## Theorem 2.1

The graph $G$ is obtained by joining two cycles $C_{n}$ and $C_{m}$ by a path $P_{s}$ is a $k^{\text {th }}$ Fibonacci prime graph $\mathrm{n}, \mathrm{m} \geq 3, \mathrm{k}, \mathrm{s} \geq 2$.

## Proof.

The graph $G$ is obtained by joining two cycles $C_{n}$ and $C_{m}$ by a path $P_{s}$.
Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ be the vertices of the cycle $\mathrm{C}_{\mathrm{n}}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{m}}$ be the vertices of the cycle $\mathrm{C}_{\mathrm{m}}$ and $u_{1}, u_{2}, \ldots, u_{s}$ be the vertices of the path $P_{s}$ with $u_{1}=v_{1}$ and $u_{s}=w_{1}$.
The edge set $\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \mid 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right\} \cup\left\{\mathrm{v}_{1} \mathrm{u}_{2}\right\} \cup\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1} \mid 2 \leq \mathrm{i} \leq \mathrm{s}-2\right\} \cup\left\{\mathrm{u}_{\mathrm{s}-1} \mathrm{w}_{1}\right\}$ $\cup\left\{\mathrm{w}_{\mathrm{i}} \mathrm{W}_{\mathrm{i}+1} \mid 1 \leq \mathrm{i} \leq \mathrm{m}-1\right\} \cup\left\{\mathrm{w}_{\mathrm{m}} \mathrm{W}_{1}\right\}$.
Then $|\mathrm{V}(\mathrm{G})|=\mathrm{n}+\mathrm{s}+\mathrm{m}-2$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{n}+\mathrm{s}+\mathrm{m}-1$.
Define the mapping $\mathrm{g}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{\mathrm{f}_{\mathrm{k},} \mathrm{f}_{\mathrm{k}+1}, \ldots, \mathrm{f}_{\mathrm{k}+\mathrm{n+s+m}-3}\right\}$ as follows
Case 1:n is odd.
$\mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{k}+\mathrm{n}-2 \mathrm{i}+1}$, for $1 \leq \mathrm{i} \leq \frac{\mathrm{n}+1}{2}$
$\mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{k}-\mathrm{n}+2 \mathrm{i}-2}$, for $\frac{\mathrm{n}+3}{2} \leq \mathrm{i} \leq \mathrm{n}$
$g\left(u_{i}\right)=f_{k+n+i-2}$, for $2 \leq i \leq s-1$
Case 1(a): m is odd.
$g\left(w_{i}\right)=f_{k+n+s+2 i-4}$, for $1 \leq i \leq \frac{m+1}{2}$
$\mathrm{g}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+2 \mathrm{~m}-2 \mathrm{i}-1}$, for $\frac{\mathrm{m}+3}{2} \leq \mathrm{i} \leq \mathrm{m}$
Case $1(\mathrm{~b}): \mathrm{m}$ is even.
$g\left(w_{i}\right)=f_{k+n+s+2 i-4}$, for $1 \leq i \leq \frac{m}{2}$
$\mathrm{g}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+2 \mathrm{~m}-2 \mathrm{i}-1}$, for $\frac{\mathrm{m}+2}{2} \leq \mathrm{i} \leq \mathrm{m}$
Then the induced function $\mathrm{g}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$ is defined by

$$
\mathrm{g}^{*}(\mathrm{xy})=\operatorname{gcd}\{\mathrm{g}(\mathrm{x}), \mathrm{g}(\mathrm{y})\} \forall \mathrm{xy} \in \mathrm{E}(\mathrm{G}) .
$$

Now,
$\operatorname{gcd}\left\{\mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{v}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}-2 \mathrm{i}+1}, \mathrm{f}_{\mathrm{k}+\mathrm{n}-2 \mathrm{i}-1}\right\}=1,1 \leq \mathrm{i} \leq \frac{\mathrm{n}-1}{2}$
$\operatorname{gcd}\left\{\mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{v}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}}, \mathrm{f}_{\mathrm{k}+1}\right\}=1, \mathrm{i}=\frac{\mathrm{n}+1}{2}$
$\operatorname{gcd}\left\{g\left(\mathrm{v}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{v}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}-\mathrm{n}+2 \mathrm{i}-2}, \mathrm{f}_{\mathrm{k}-\mathrm{n}+2 \mathrm{i}}\right\}=1, \frac{\mathrm{n}+3}{2} \leq \mathrm{i} \leq \mathrm{n}-1$
$\operatorname{gcd}\left\{\mathrm{g}\left(\mathrm{v}_{\mathrm{n}}\right), \mathrm{g}\left(\mathrm{v}_{1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}-2}, \mathrm{f}_{\mathrm{k}+\mathrm{n}-1}\right\}=1$
$\operatorname{gcd}\left\{g\left(v_{1}\right), g\left(u_{2}\right)\right\}=\operatorname{gcd}\left\{f_{k+n-1}, f_{k+n}\right\}=1$
$\operatorname{gcd}\left\{g\left(\mathrm{u}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{u}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n+i}-2}, \mathrm{f}_{\mathrm{k}+\mathrm{n+i}-1}\right\}=1,2 \leq \mathrm{i} \leq \mathrm{s}-1$
$\operatorname{gcd}\left\{g\left(u_{s}\right), g\left(w_{1}\right)\right\}=\operatorname{gcd}\left\{f_{\mathrm{k}+\mathrm{n}+\mathrm{s}-3}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}-2}\right\}=1$
when $m$ is odd
$\operatorname{gcd}\left\{\mathrm{g}\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+2 \mathrm{i}-4}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+2 \mathrm{i}-2}\right\}=1,1 \leq \mathrm{i} \leq \frac{\mathrm{m}-1}{2}$
$\operatorname{gcd}\left\{\mathrm{g}\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+\mathrm{m}-3}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+\mathrm{m}-4}\right\}=1, \mathrm{i}=\frac{\mathrm{m}+1}{2}$
$\operatorname{gcd}\left\{g\left(w_{i}\right), g\left(w_{i+1}\right)\right\}=\operatorname{gcd}\left\{f_{k+n+s+2 m-2 i-1}, f_{k+n+s+2 m-2 i-3}\right\}=1, \frac{m+3}{2} \leq i \leq m-1$
$\operatorname{gcd}\left\{g\left(\mathrm{w}_{\mathrm{n}}\right), \mathrm{g}\left(\mathrm{w}_{1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}-1}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}-2}\right\}=1$
when $m$ is even
$\operatorname{gcd}\left\{\mathrm{g}\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+2 \mathrm{i}-4}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+2 \mathrm{i}-2}\right\}=1,1 \leq \mathrm{i} \leq \frac{\mathrm{m}-2}{2}$
$\operatorname{gcd}\left\{\mathrm{g}\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+\mathrm{m}-4}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+\mathrm{m}-3}\right\}=1, \mathrm{i}=\frac{\mathrm{m}}{2}$
$\operatorname{gcd}\left\{\mathrm{g}\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+2 \mathrm{~m}-2 \mathrm{i}-1}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+2 \mathrm{~m}-2 \mathrm{i}-3}\right\}=1, \frac{\mathrm{~m}+2}{2} \leq \mathrm{i} \leq \mathrm{m}-1$
$\operatorname{gcd}\left\{g\left(\mathrm{w}_{\mathrm{n}}\right), \mathrm{g}\left(\mathrm{w}_{1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}-1}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}-2}\right\}=1$
Thus $\mathrm{g}^{*}(\mathrm{xy})=\operatorname{gcd}\{\mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y})\}=1, \forall \mathrm{xy} \in \mathrm{E}(\mathrm{G})$.
Case $2: n$ is even.
$\mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{k}+\mathrm{n}-2 \mathrm{i}+1}$, for $1 \leq \mathrm{i} \leq \frac{\mathrm{n}}{2}$
$\mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{k}-\mathrm{n}+2 \mathrm{i}-2}$, for $\frac{\mathrm{n}+2}{2} \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{g}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{k}+\mathrm{n+i}-2}$, for $2 \leq \mathrm{i} \leq \mathrm{s}-1$
Case 2(a): m is odd.
$g\left(w_{i}\right)=f_{k+n+s+2 i-4}$, for $1 \leq i \leq \frac{m+1}{2}$
$\mathrm{g}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+2 \mathrm{~m}-2 \mathrm{i}-1}$, for $\frac{\mathrm{m}+3}{2} \leq \mathrm{i} \leq \mathrm{m}$
Case 2(b): $m$ is even.
$g\left(w_{i}\right)=f_{k+n+s+2 i-4}$, for $1 \leq i \leq \frac{m}{2}$
$\mathrm{g}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+2 \mathrm{~m}-2 \mathrm{i}-1}$, for $\frac{\mathrm{m}+2}{2} \leq \mathrm{i} \leq \mathrm{m}$
Then the induced function $\mathrm{g}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$ is defined by

$$
\mathrm{g}^{*}(\mathrm{xy})=\operatorname{gcd}\{\mathrm{g}(\mathrm{x}), \mathrm{g}(\mathrm{y})\} \forall \mathrm{xy} \in \mathrm{E}(\mathrm{G}) .
$$

Now,
$\operatorname{gcd}\left\{\mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{v}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}-2 \mathrm{i}+1}, \mathrm{f}_{\mathrm{k}+\mathrm{n}-2 \mathrm{i}-1}\right\}=1,1 \leq \mathrm{i} \leq \frac{\mathrm{n}-2}{2}$
$\operatorname{gcd}\left\{\mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{v}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+1}, \mathrm{f}_{\mathrm{k}}\right\}=1, \mathrm{i}=\frac{\mathrm{n}}{2}$
$\operatorname{gcd}\left\{g\left(\mathrm{v}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{v}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}-\mathrm{n}+2 \mathrm{i}-2}, \mathrm{f}_{\mathrm{k}-\mathrm{n}+2 \mathrm{i}}\right\}=1, \frac{\mathrm{n}+2}{2} \leq \mathrm{i} \leq \mathrm{n}-1$
$\operatorname{gcd}\left\{g\left(\mathrm{v}_{\mathrm{n}}\right), \mathrm{g}\left(\mathrm{v}_{1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}-2}, \mathrm{f}_{\mathrm{k}+\mathrm{n}-1}\right\}=1$
$\operatorname{gcd}\left\{g\left(v_{1}\right), g\left(u_{2}\right)\right\}=\operatorname{gcd}\left\{f_{k+n-1}, f_{k+n}\right\}=1$
$\operatorname{gcd}\left\{g\left(\mathrm{u}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{u}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n+i}-2}, \mathrm{f}_{\mathrm{k}+\mathrm{n+i}-1}\right\}=1,2 \leq \mathrm{i} \leq \mathrm{s}-1$
$\operatorname{gcd}\left\{g\left(u_{s}\right), g\left(w_{1}\right)\right\}=\operatorname{gcd}\left\{f_{\mathrm{k}+\mathrm{n}+\mathrm{s}-3}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}-2}\right\}=1$
when $m$ is odd

$$
\begin{aligned}
& \operatorname{gcd}\left\{g\left(w_{i}\right), g\left(w_{i+1}\right)\right\}=\operatorname{gcd}\left\{f_{\mathrm{k}+\mathrm{n}+\mathrm{s}+2 \mathrm{i}-4}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+2 \mathrm{i}-2}\right\}=1,1 \leq \mathrm{i} \leq \frac{\mathrm{m}-1}{2} \\
& \operatorname{gcd}\left\{\mathrm{~g}\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+\mathrm{m}-3}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+\mathrm{m}-4}\right\}=1, \mathrm{i}=\frac{\mathrm{m}+1}{2} \\
& \operatorname{gcd}\left\{\mathrm{~g}\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+2 \mathrm{~m}-2 \mathrm{i}-1}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+2 \mathrm{~m}-2 \mathrm{i}-3}\right\}=1, \frac{\mathrm{~m}+3}{2} \leq \mathrm{i} \leq \mathrm{m}-1 \\
& \operatorname{gcd}\left\{\mathrm{~g}\left(\mathrm{w}_{\mathrm{n}}\right), \mathrm{g}\left(\mathrm{w}_{1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}-1}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}-2}\right\}=1
\end{aligned}
$$

when $m$ is even

$$
\begin{aligned}
& \operatorname{gcd}\left\{g\left(w_{i}\right), g\left(w_{i+1}\right)\right\}=\operatorname{gcd}\left\{f_{\mathrm{k}+\mathrm{n}+\mathrm{s}+2 \mathrm{i}-4}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+2 \mathrm{i}-2}\right\}=1,1 \leq \mathrm{i} \leq \frac{\mathrm{m}-2}{2} \\
& \operatorname{gcd}\left\{\mathrm{~g}\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+\mathrm{m}-4}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+\mathrm{m}-3}\right\}=1, \mathrm{i}=\frac{\mathrm{m}}{2} \\
& \operatorname{gcd}\left\{\mathrm{~g}\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+2 \mathrm{~m}-2 \mathrm{i}-1}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}+2 \mathrm{~m}-2 \mathrm{i}-3}\right\}=1, \frac{\mathrm{~m}+2}{2} \leq \mathrm{i} \leq \mathrm{m}-1 \\
& \operatorname{gcd}\left\{\mathrm{~g}\left(\mathrm{w}_{\mathrm{n}}\right), \mathrm{g}\left(\mathrm{w}_{1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}-1}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}-2}\right\}=1 \\
& \text { Thus } \mathrm{g}^{*}(\mathrm{xy})=\operatorname{gcd}\{\mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y})\}=1, \forall \mathrm{xy} \in \mathrm{E}(\mathrm{G}) .
\end{aligned}
$$

## ISSN PRINT 23191775 Online 23207876

Research paper
© 2012 IJFANS. All Rights Reserved, UGC CARE Listed ( Group -1) Journal Volume 11,S Iss 3, Dec 2022
Therefore, the graph $G$ is obtained by joining two cycles $C_{n}$ and $C_{m}$ by a path $P_{s}$ is a $k^{\text {th }}$ Fibonacci prime graph $\mathrm{n}, \mathrm{m} \geq 3, \mathrm{k}, \mathrm{s} \geq 2$.

## Illustration 2.1

The graph $G$ is obtained by joining two cycles $C_{6}$ and $C_{7}$ by a path $P_{7}$ and its $3^{\text {rd }}$ Fibonacci prime labeling are shown in figure 2.1.


Figure 2.1 Graph $G$ is obtained by joining two cycles $C_{6}$ and $C_{7}$ by a path $P_{7}$ is $\mathbf{3}^{\text {rd }}$ Fibonacci prime graph

## Theorem 2.2

The graph $G$ is obtained by joining two cycles $C_{n}$ and $C_{m}$ by a triangular snake $T_{s}$ is a $k^{\text {th }}$
Fibonacci prime graph $\mathrm{n}, \mathrm{m} \geq 3, \mathrm{k}, \mathrm{s} \geq 2$.

## Proof.

The graph $G$ is obtained by joining two cycles $C_{n}$ and $C_{m}$ by a triangular snake $T_{s}$.
Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ be the vertices of the cycle $\mathrm{C}_{\mathrm{n}}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{m}}$ be the vertices of the cycle $\mathrm{C}_{\mathrm{m}}$ and $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{s}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{s}-1}$ be the vertices of the triangular snake $\mathrm{T}_{\mathrm{s}}$ with $\mathrm{x}_{1}=\mathrm{v}_{1}$ and $\mathrm{x}_{\mathrm{s}}=\mathrm{w}_{1}$.
The edge set $\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \mid 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right\} \cup\left\{\mathrm{v}_{1} \mathrm{x}_{2}\right\} \cup\left\{\mathrm{v}_{1} \mathrm{y}_{1}\right\} \cup$
$\left\{\mathrm{x}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}+1} \mid 2 \leq \mathrm{i} \leq \mathrm{s}-2\right\} \cup\left\{\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}} \mid 2 \leq \mathrm{i} \leq \mathrm{s}-1\right\} \cup\left\{\mathrm{y}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}+1} \mid 1 \leq \mathrm{i} \leq \mathrm{s}-2\right\} \cup\left\{\mathrm{x}_{\mathrm{s}-1} \mathrm{w}_{1}\right\} \cup\left\{\mathrm{y}_{\mathrm{s}-1} \mathrm{w}_{1}\right\} \cup$
$\left\{\mathrm{w}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}+1} \mid 1 \leq \mathrm{i} \leq \mathrm{m}-1\right\} \cup\left\{\mathrm{w}_{\mathrm{m}} \mathrm{W}_{1}\right\}$.
Then $|\mathrm{V}(\mathrm{G})|=\mathrm{n}+2 \mathrm{~s}+\mathrm{m}-3$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{n}+3 \mathrm{~s}+\mathrm{m}-3$.
Define the mapping $\mathrm{g}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{\mathrm{f}_{\mathrm{k}}, \mathrm{f}_{\mathrm{k}+1}, \ldots, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+\mathrm{m}-4}\right\}$ as follows
Case 1:n is odd.
$g\left(v_{i}\right)=f_{k+n-2 i+1}$, for $1 \leq i \leq \frac{n+1}{2}$
$\mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{k}-\mathrm{n}+2 \mathrm{i}-2}$, for $\frac{\mathrm{n}+3}{2} \leq \mathrm{i} \leq \mathrm{n}$
$g\left(x_{i}\right)=f_{k+n+2 i-3}$, for $2 \leq i \leq s-1$
$g\left(y_{i}\right)=f_{k+n+2 i-2}$, for $1 \leq i \leq s-1$
Case 1(a): m is odd.
$g\left(w_{i}\right)=f_{k+n+2 s+2 i-5}$, for $1 \leq i \leq \frac{m+1}{2}$
$g\left(w_{i}\right)=f_{k+n+2 s+2 m-2 i-2}$, for $\frac{m+3}{2} \leq i \leq m$
Case 1(b): $m$ is even.
$\mathrm{g}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{i}-5}$, for $1 \leq \mathrm{i} \leq \frac{\mathrm{m}}{2}$
$g\left(w_{i}\right)=f_{k+n+2 s+2 m-2 i-2}$, for $\frac{m+2}{2} \leq i \leq m$
Then the induced function $\mathrm{g}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$ is defined by

$$
\mathrm{g}^{*}(\mathrm{xy})=\operatorname{gcd}\{\mathrm{g}(\mathrm{x}), \mathrm{g}(\mathrm{y})\} \forall \mathrm{xy} \in \mathrm{E}(\mathrm{G}) .
$$

Now,
$\operatorname{gcd}\left\{\mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{v}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}-2 \mathrm{i}+1}, \mathrm{f}_{\mathrm{k}+\mathrm{n}-2 \mathrm{i}-1}\right\}=1,1 \leq \mathrm{i} \leq \frac{\mathrm{n}-1}{2}$
$\operatorname{gcd}\left\{g\left(\mathrm{v}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{v}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}}, \mathrm{f}_{\mathrm{k}+1}\right\}=1, \mathrm{i}=\frac{\mathrm{n}+1}{2}$
$\operatorname{gcd}\left\{g\left(\mathrm{v}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{v}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}-\mathrm{n}+2 \mathrm{i}-2}, \mathrm{f}_{\mathrm{k}-\mathrm{n}+2 \mathrm{i}}\right\}=1, \frac{\mathrm{n}+3}{2} \leq \mathrm{i} \leq \mathrm{n}-1$
$\operatorname{gcd}\left\{g\left(\mathrm{v}_{\mathrm{n}}\right), \mathrm{g}\left(\mathrm{v}_{1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}-2}, \mathrm{f}_{\mathrm{k}+\mathrm{n}-1}\right\}=1$
$\operatorname{gcd}\left\{g\left(\mathrm{v}_{1}\right), \mathrm{g}\left(\mathrm{x}_{2}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}-1}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+1}\right\}=1$
$\operatorname{gcd}\left\{g\left(\mathrm{v}_{1}\right), \mathrm{g}\left(\mathrm{y}_{1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}-1}, \mathrm{f}_{\mathrm{k}+\mathrm{n}}\right\}=1$
$\operatorname{gcd}\left\{g\left(x_{i}\right), g\left(x_{i+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{i}-3}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{i}-1}\right\}=1,2 \leq \mathrm{i} \leq \mathrm{s}-1$
$\operatorname{gcd}\left\{g\left(x_{i}\right), g\left(y_{i}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{i}-3}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{i}-2}\right\}=1,2 \leq \mathrm{i} \leq \mathrm{s}-1$
$\operatorname{gcd}\left\{\mathrm{g}\left(\mathrm{y}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{x}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{i}-2}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{i}-1}\right\}=1,1 \leq \mathrm{i} \leq \mathrm{s}-1$
$\operatorname{gcd}\left\{g\left(X_{\text {s-1 }}\right), g\left(w_{1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}-4}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}-3}\right\}=1$
$\operatorname{gcd}\left\{g\left(\mathrm{y}_{\mathrm{s}-1}\right), \mathrm{g}\left(\mathrm{w}_{1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}-5}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}-3}\right\}=1$
when $m$ is odd
$\operatorname{gcd}\left\{g\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{i}-5}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{i}-3}\right\}=1,1 \leq \mathrm{i} \leq \frac{\mathrm{m}-1}{2}$
$\operatorname{gcd}\left\{\mathrm{g}\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+\mathrm{m}-4}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+\mathrm{m}-5}\right\}=1, \mathrm{i}=\frac{\mathrm{m}+1}{2}$
$\operatorname{gcd}\left\{\mathrm{g}\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{~m}-2 \mathrm{i}-2}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{~m}-2 \mathrm{i}-4}\right\}=1, \frac{\mathrm{~m}+3}{2} \leq \mathrm{i} \leq \mathrm{m}-1$
$\operatorname{gcd}\left\{g\left(w_{n}\right), g\left(w_{1}\right)\right\}=\operatorname{gcd}\left\{f_{\text {k+n+2s-2 }}, f_{\text {k }+\mathrm{n}+2 \mathrm{~s}-3}\right\}=1$
when $m$ is even
$\operatorname{gcd}\left\{g\left(w_{i}\right), g\left(w_{i+1}\right)\right\}=\operatorname{gcd}\left\{f_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{i}-5}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{i}-3}\right\}=1,1 \leq \mathrm{i} \leq \frac{\mathrm{m}-2}{2}$
$\operatorname{gcd}\left\{g\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+\mathrm{m}-5}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+\mathrm{m}-4}\right\}=1, \mathrm{i}=\frac{\mathrm{m}}{2}$
$\operatorname{gcd}\left\{g\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{~m}-2 \mathrm{i}-2}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{~m}-2 \mathrm{i}-4}\right\}=1, \frac{\mathrm{~m}+2}{2} \leq \mathrm{i} \leq \mathrm{m}-1$
$\operatorname{gcd}\left\{\operatorname{g}\left(\mathrm{w}_{\mathrm{n}}\right), \mathrm{g}\left(\mathrm{w}_{1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}-2}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}-3}\right\}=1$
Thus $\mathrm{g}^{*}(\mathrm{xy})=\operatorname{gcd}\{\mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y})\}=1, \forall \mathrm{xy} \in \mathrm{E}(\mathrm{G})$.
Case $2: \mathrm{n}$ is even.
$\mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{k}+\mathrm{n}-2 \mathrm{i}+1}$, for $1 \leq \mathrm{i} \leq \frac{\mathrm{n}}{2}$
$\mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{k}-\mathrm{n}+2 \mathrm{i}-2}$, for $\frac{\mathrm{n}+2}{2} \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{g}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{i}-3}$, for $2 \leq \mathrm{i} \leq \mathrm{s}-1$
$g\left(y_{i}\right)=f_{k+n+2 i-2}$, for $1 \leq i \leq s-1$
Case 2(a): m is odd.
$g\left(w_{i}\right)=f_{k+n+2 s+2 i-5}$, for $1 \leq i \leq \frac{m+1}{2}$
$g\left(w_{i}\right)=f_{k+n+2 s+2 m-2 i-2}$, for $\frac{m+3}{2} \leq i \leq m$
Case 2(b) : $m$ is even.
$\mathrm{g}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{i}-5}$, for $1 \leq \mathrm{i} \leq \frac{\mathrm{m}}{2}$
$\mathrm{g}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{~m}-2 \mathrm{i}-2 \text {, for } \frac{\mathrm{m}+2}{2} \leq \mathrm{i} \leq \mathrm{m}, ~\left({ }^{2}\right)}$
Then the induced function $\mathrm{g}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$ is defined by

$$
\mathrm{g}^{*}(\mathrm{xy})=\operatorname{gcd}\{\mathrm{g}(\mathrm{x}), \mathrm{g}(\mathrm{y})\} \forall \mathrm{xy} \in \mathrm{E}(\mathrm{G})
$$

Now,
$\operatorname{gcd}\left\{g\left(\mathrm{v}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{v}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}-2 \mathrm{i}+1}, \mathrm{f}_{\mathrm{k}+\mathrm{n}-2 \mathrm{i}-1}\right\}=1,1 \leq \mathrm{i} \leq \frac{\mathrm{n}-2}{2}$
$\operatorname{gcd}\left\{\mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{v}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+1}, \mathrm{f}_{\mathrm{k}}\right\}=1, \mathrm{i}=\frac{\mathrm{n}}{2}$
$\operatorname{gcd}\left\{\mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{v}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}-\mathrm{n}+2 \mathrm{i}-2}, \mathrm{f}_{\mathrm{k}-\mathrm{n}+2 \mathrm{i}}\right\}=1, \frac{\mathrm{n}+2}{2} \leq \mathrm{i} \leq \mathrm{n}-1$
$\operatorname{gcd}\left\{g\left(\mathrm{v}_{\mathrm{n}}\right), \mathrm{g}\left(\mathrm{v}_{1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}-2}, \mathrm{f}_{\mathrm{k}+\mathrm{n}-1}\right\}=1$
$\operatorname{gcd}\left\{g\left(\mathrm{v}_{1}\right), \mathrm{g}\left(\mathrm{x}_{2}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}-1}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+1}\right\}=1$
$\operatorname{gcd}\left\{g\left(v_{1}\right), g\left(y_{1}\right)\right\}=\operatorname{gcd}\left\{f_{k+n-1}, f_{k+n}\right\}=1$
$\operatorname{gcd}\left\{g\left(\mathrm{x}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{x}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{i}-3}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{i}-1}\right\}=1,2 \leq \mathrm{i} \leq \mathrm{s}-1$
$\operatorname{gcd}\left\{g\left(x_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{y}_{\mathrm{i}}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{i}-3}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{i}-2}\right\}=1,2 \leq \mathrm{i} \leq \mathrm{s}-1$
$\operatorname{gcd}\left\{g\left(\mathrm{y}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{x}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{i}-2}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{i}-1}\right\}=1,1 \leq \mathrm{i} \leq \mathrm{s}-1$
$\operatorname{gcd}\left\{g\left(x_{s-1}\right), g\left(w_{1}\right)\right\}=\operatorname{gcd}\left\{f_{\mathrm{k}+\mathrm{n}+\mathrm{s}-4}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}-3}\right\}=1$
$\operatorname{gcd}\left\{g\left(\mathrm{y}_{\mathrm{s}-1}\right), \mathrm{g}\left(\mathrm{w}_{1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+\mathrm{s}-5}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}-3}\right\}=1$
when $m$ is odd

$$
\begin{aligned}
& \operatorname{gcd}\left\{\mathrm{g}\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{i}-5}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{i}-3}\right\}=1,1 \leq \mathrm{i} \leq \frac{\mathrm{m}-1}{2} \\
& \operatorname{gcd}\left\{\mathrm{~g}\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+\mathrm{m}-4}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+\mathrm{m}-5}\right\}=1, \mathrm{i}=\frac{\mathrm{m}+1}{2} \\
& \operatorname{gcd}\left\{\mathrm{~g}\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{~m}-2 \mathrm{i}-2}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{~m}-2 \mathrm{i}-4}\right\}=1, \frac{\mathrm{~m}+3}{2} \leq \mathrm{i} \leq \mathrm{m}-1 \\
& \operatorname{gcd}\left\{\mathrm{~g}\left(\mathrm{w}_{\mathrm{n}}\right), \mathrm{g}\left(\mathrm{w}_{1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}-2}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}-3}\right\}=1
\end{aligned}
$$

when $m$ is even

$$
\begin{aligned}
& \operatorname{gcd}\left\{g\left(w_{i}\right), g\left(w_{i+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{i}-5}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{i}-3}\right\}=1,1 \leq \mathrm{i} \leq \frac{\mathrm{m}-2}{2} \\
& \operatorname{gcd}\left\{\mathrm{~g}\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+\mathrm{m}-5}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+\mathrm{m}-4}\right\}=1, \mathrm{i}=\frac{\mathrm{m}}{2} \\
& \operatorname{gcd}\left\{\mathrm{~g}\left(\mathrm{w}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{w}_{\mathrm{i}+1}\right)\right\}=\operatorname{gcd}\left\{\mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{~m}-2 \mathrm{i}-2}, \mathrm{f}_{\mathrm{k}+\mathrm{n}+2 \mathrm{~s}+2 \mathrm{~m}-2 \mathrm{i}-4}\right\}=1, \frac{\mathrm{~m}+2}{2} \leq \mathrm{i} \leq \mathrm{m}-1
\end{aligned}
$$

$$
\operatorname{gcd}\left\{g\left(w_{n}\right), g\left(w_{1}\right)\right\}=\operatorname{gcd}\left\{f_{k+n+2 s-2}, f_{k+n+2 s-3}\right\}=1
$$

$$
\text { Thus } \mathrm{g}^{*}(\mathrm{xy})=\operatorname{gcd}\{\mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y})\}=1, \forall \mathrm{xy} \in \mathrm{E}(\mathrm{G})
$$

Therefore, the graph $G$ is obtained by joining two cycles $C_{n}$ and $C_{m}$ by a triangular snake $T_{s}$ is a $\mathrm{k}^{\text {th }}$ Fibonacci prime graph $\mathrm{n}, \mathrm{m} \geq 3, \mathrm{k}, \mathrm{s} \geq 2$.

## Illustration 2.2

The graph $G$ is obtained by joining two cycles $C_{7}$ and $C_{6}$ by a triangular snake $T_{5}$ and its $5^{\text {th }}$ Fibonacci prime labeling are shown in figure 2.2.


# ISSN PRINT 23191775 Online 23207876 

## Figure 2.2 Graph $\mathbf{G}$ is obtained by joining two cycles $\mathbf{C}_{7}$ and $\mathbf{C}_{6}$ by a triangular snake $\mathbf{T}_{5}$ is $5^{\text {th }}$ Fibonacci prime graph

## 3. CONCLUSION

In this paper, the $\mathrm{k}^{\text {th }}$ Fibonacci prime labeling of a graph G is obtained by joining two cycles $C_{n}$ and $C_{m}$ by a path $P_{s}$ and a graph $G$ is obtained by joining two cycles $C_{n}$ and $C_{m}$ by a triangular snake $\mathrm{T}_{\mathrm{s}}$ are presented.

## REFERENCES

[1] J.A. Bondy and U.S.R. Murthy, Graph Theory and Application (North Holland). New York (1976).
[2] D.M. Burton, Elementary Number Theory, Second Edition, Wm. C. Brown Company Publishers, (1980).
[3] J.A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 16(2021), 147, \#DS6.
[4] K. Periasamy, K. Venugopal and P. Lawrence Rozario Raj, $\mathrm{k}^{\text {th }}$ Fibonacci Prime Labeling of Graphs, International Journal of Mathematics Trends and Technology, 68(5), (2022), 61-67.
[5] C. Sekar and S. Chandrakala, Fibonacci Prime Labeling of Graphs, International Journal of Creative Research Thoughts, 6(2), (2018), 995-1001.
[6] A.N. Tout.A, Dabboucy and K. Howalla, Prime Labeling of Graphs, Nat.Acad .Sci letters 11 (1982) 365-368.
[7] S. K. Vaidya and U. M. Prajapati, Some Results on Prime and k-Prime Labeling, J. Math. Research, 3(1), (2011), 66-75.

